All posts by Tom

Neptune Has a New Spot

neptunespot

Neptune has a new spot and thanks to Hubble we can see it. Click the image for the larger version.

From Hubble (via NASA):
New images obtained on May 16, 2016, by NASA’s Hubble Space Telescope confirm the presence of a dark vortex in the atmosphere of Neptune. Though similar features were seen during the Voyager 2 flyby of Neptune in 1989 and by the Hubble Space Telescope in 1994, this vortex is the first one observed on Neptune in the 21st century.

The discovery was announced on May 17, 2016, in a Central Bureau for Astronomical Telegrams (CBAT) electronic telegram by University of California at Berkeley research astronomer Mike Wong, who led the team that analyzed the Hubble data.

Neptune’s dark vortices are high-pressure systems and are usually accompanied by bright “companion clouds,” which are also now visible on the distant planet. The bright clouds form when the flow of ambient air is perturbed and diverted upward over the dark vortex, causing gases to likely freeze into methane ice crystals.

“Dark vortices coast through the atmosphere like huge, lens-shaped gaseous mountains,” Wong said. “And the companion clouds are similar to so-called orographic clouds that appear as pancake-shaped features lingering over mountains on Earth.”

Beginning in July 2015, bright clouds were again seen on Neptune by several observers, from amateurs to astronomers at the W. M. Keck Observatory in Hawaii. Astronomers suspected that these clouds might be bright companion clouds following an unseen dark vortex. Neptune’s dark vortices are typically only seen at blue wavelengths, and only Hubble has the high resolution required for seeing them on distant Neptune.

In September 2015, the Outer Planet Atmospheres Legacy (OPAL) program, a long-term Hubble Space Telescope project that annually captures global maps of the outer planets, revealed a dark spot close to the location of the bright clouds, which had been tracked from the ground. By viewing the vortex a second time, the new Hubble images confirm that OPAL really detected a long-lived feature. The new data enabled the team to create a higher-quality map of the vortex and its surroundings.

Neptune’s dark vortices have exhibited surprising diversity over the years, in terms of size, shape, and stability (they meander in latitude, and sometimes speed up or slow down). They also come and go on much shorter timescales compared to similar anticyclones seen on Jupiter; large storms on Jupiter evolve over decades.

Planetary astronomers hope to better understand how dark vortices originate, what controls their drifts and oscillations, how they interact with the environment, and how they eventually dissipate, according to UC Berkeley doctoral student Joshua Tollefson, who was recently awarded a prestigious NASA Earth and Space Science Fellowship to study Neptune’s atmosphere. Measuring the evolution of the new dark vortex will extend knowledge of both the dark vortices themselves, as well as the structure and dynamics of the surrounding atmosphere.
Continue reading

Mystery Spots on Ceres

ceressalt
A nice look at some of those mysterious white spots on Ceres. The area shown above is some of the brightest on the dwarf planet.

From the Dawn vantage point of just 385 km / 240 miles scientists believe the white material is some of salt.

Looking in the center of the image at the grooved or canyon-like features it appears the ‘salts’ are not inside at the bottom – click the image to see the larger version. The mountainous feature is completely covered including irregular terrain. So knowing what type of salt we are looking at will go a long ways towards solving the second part and larger part of the mystery: how the salts came to be where they are.

The resolution of the image is very good showing 35 meters / 120 feet per pixel. I am going out on a limb and say those canyon-like features are about 210 meters / 690 feet across.

Image: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Looking Towards The Archer

hubsag

 
From Hubble:
This colorful and star-studded view of the Milky Way galaxy was captured when the NASA/ESA Hubble Space Telescope pointed its cameras towards the constellation of Sagittarius (The Archer). Blue stars can be seen scattered across the frame, set against a distant backdrop of red-hued cosmic companions. This blue litter most likely formed at the same time from the same collapsing molecular cloud.

The color of a star can reveal many of its secrets. Shades of red indicate a star much cooler than the sun, so either at the end of its life, or much less massive. These lower-mass stars are called red dwarfs and are thought to be the most common type of star in the Milky Way. Similarly, brilliant blue hues indicate hot, young, or massive stars, many times the mass of the sun.

A star’s mass decides its fate; more massive stars burn brightly over a short lifespan, and die young after only tens of millions of years. Stars like the sun typically have more sedentary lifestyles and live longer, burning for approximately ten billion years. Smaller stars, on the other hand, live life in the slow lane and are predicted to exist for trillions of years, well beyond the current age of the universe.

Image credit: ESA/NASA
Text credit: European Space Agency

Happy Solstice!

summersolsctice

A little déjà vu? By the way the moon is full today too and this is known as the Strawberry Moon, not for any color, rather the beginning of Strawberry season in the north.

Today the Sun reaches its most northern point in the sky in the northern hemisphere and the lowest in the southern hemisphere.

Put another way,  for the northern hemisphere: the June solstice is when the subsolar point or that point where the sun is perceived to be directly over head, is at the northern most latitude it will attain before due to the tilt of the Earth on its axis and is on the Tropic of Cancer (23.44 deg). After the June Solstice the Sun will day by day become lower in the northern sky until the December solstice when it rises to its lowest point of the year.

The southern hemisphere experiences the opposite, so today the Sun is at its lowest point and after today will gradually reach higher in sky until the December solstice.

The moment of the June Solstice occurs today at 22:34 UTC.  US Naval Observatory.

More at:  timeanddate.com

My typical June solstice tradition is to take a nice long walk at sunrise, heavy rain made me skip the walk.

#SummerSolstice

Image: Creative Commons

Welcome Home!

Good news! Expedition 47 Commander Tim Kopra of NASA, flight engineer Tim Peake of ESA (European Space Agency) and Soyuz Commander Yuri Malenchenko of Roscosmos touched down southeast of the remote town of Dzhezkazgan in Kazakhstan the three returning crew members spent 186 days in space.

Video from NASA

The crew completed the in-flight portion of NASA human research studies in ocular health, cognition, salivary markers and microbiome and part of the research looked like it was a little fun too:

Fun for Tim Kopra that is, I don’t think I could handle the “Tim Peake Twirl“.

Shores of Pluto

plutoterrain

 

Those “pits” are very intriguing, need to know more about them.

New Horizons:

This enhanced color view from NASA’s New Horizons spacecraft zooms in on the southeastern portion of Pluto’s great ice plains, where at lower right the plains border rugged, dark highlands informally named Krun Macula. (Krun is the lord of the underworld in the Mandaean religion, and a ‘macula’ is a dark feature on a planetary surface.)

Pluto is believed to get its dark red color from tholins, complex molecules found across much of the surface. Krun Macula rises 1.5 miles (2.5 kilometers) above the surrounding plain – informally named Sputnik Planum – and is scarred by clusters of connected, roughly circular pits that typically reach between 5 and 8 miles (8 and 13 kilometers) across, and up to 1.5 miles (2.5 kilometers) deep.

At the boundary with Sputnik Planum, these pits form deep valleys reaching more than 25 miles (40 kilometers) long, 12.5 miles (20 kilometers) wide and almost 2 miles (3 kilometers) deep – almost twice as deep as the Grand Canyon in Arizona – and have floors covered with nitrogen ice.  New Horizons scientists think these pits may have formed through surface collapse, although what may have prompted such a collapse is a mystery.

This scene was created using three separate observations made by New Horizons in July 2015. The right half of the image is composed of 260 feet- (80 meter-) per-pixel data from the Long Range Reconnaissance Imager (LORRI), obtained at 9,850 miles (15,850 kilometers) from Pluto, about 23 minutes before New Horizons’ closest approach.  The left half is composed of 410 feet- (125 meter-) per-pixel LORRI data, obtained about six minutes earlier, with New Horizons 15,470 miles (24,900 kilometers) from Pluto.

These data respectively represent portions of the highest- and second-highest-resolution observations obtained by New Horizons in the Pluto system. The entire scene was then colorized using 2,230 feet- (680 meter-) per-pixel data from New Horizons’ Ralph/Multispectral Visual Imaging Camera (MVIC), obtained at 21,100 miles (33,900 kilometers) from Pluto, about 45 minutes before closest approach.

Credits: NASA/JHUAPL/SwRI

Getting Sandy

sandyselfie

 

The MSL rover Curiosity is showing it is getting sand covered, in fact there is a pretty good build up on some of the surfaces. Seems like not so long ago I commented that the dust was much less than I thought it could be.

From NASA’s website:

This self-portrait of NASA’s Curiosity Mars rover shows the vehicle at “Namib Dune,” where the rover’s activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.

The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity’s work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover’s robotic arm.

Namib Dune is part of the dark-sand “Bagnold Dune Field” along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.

The location of Namib Dune is show on a map of Curiosity’s route at http://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at http://photojournal.jpl.nasa.gov/catalog/PIA16064.)

The view does not include the rover’s arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic’s component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including “Rocknest” (http://photojournal.jpl.nasa.gov/catalog/PIA16468), “Windjana” (http://photojournal.jpl.nasa.gov/catalog/PIA18390) and “Buckskin” (http://photojournal.jpl.nasa.gov/catalog/PIA19807).

For scale, the rover’s wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.

MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/.

Credit: NASA/JPL-Caltech/MSSS