Rover Treks Out of Landing Ellipse

Curiosity leaves the landing area. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

Curiosity leaves the landing area. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

A landing ellipse is the projected landing area of a spacecraft. Quite a bit goes into how accurately a spacecraft can land, various things can change the landing spot like: flight angle on the way down, how much drag the atmosphere imparts and velocity and mass of the craft etc. Scientists can run simulations changing these parameters and come up with a landing ellipse out of the plotted points.

The ellipse for Curiostiy is shown in the image as a blue line and you can see the rover has crossed the line. The image from the MRO even shows the tracks – you might need to click the image to see them.

The press release mentions the World Cup, happy to say both teams I picked are still in it, so far.

Here’s the story from NASA:

Curiosity Mars Rover Reaching Edge of Its Landing Ellipse

NASA’s Curiosity Mars rover is stepping on the boundary line. Being called offside is a good thing in this case, but don’t tell the World Cup referees!

The blue line added to this June 27, 2014, image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter is the edge of the ellipse that was charted as safe terrain for the rover’s August 2012 landing. Curiosity is visible right on the ellipse line in the lower center of the image. This 3-sigma landing ellipse is about 4 miles long and 12 miles wide (7 kilometers by 20 kilometers). Curiosity reached the edge of it for the first time with a drive of about 269 feet (82 meters) earlier that day.
OK, I don’t hear any cheering yet. You must be wondering, “What the heck is a 3-sigma landing ellipse?” It is a statistical prediction made prior to landing to determine how far from a targeted center point the rover might land, given uncertainties such as the atmospheric conditions on landing day. The “3-sigma” part means three standard deviations, so the rover was very, very likely (to about the 99.9-percent level) to land somewhere inside this ellipse. Such 3-sigma ellipses get a lot of scrutiny during landing-site selection because we don’t want anything dangerous for a landing — such as boulders of cliffs — inside the ellipse.
The Mars Science Laboratory mission did not try to land Curiosity right at the base of Mount Sharp, where the most interesting terrains lay, as seen from orbit. To do so would have put unsafe slopes within the landing ellipse. Instead, the rover spent almost exactly one Martian year (687 Earth days) roving and exploring before arriving at the edge of the ellipse.
Continue reading

Saturn Weather

cassiniNPV

Here is the latest from the Cassini spacecraft. click the image above for a larger version to see a surprising amount of detail in the planet’s atmosphere.

Here’s the caption from JPL:

The Cassini spacecraft captures three magnificent sights at once: Saturn’s north polar vortex and hexagon along with its expansive rings.

The hexagon, which is wider than two Earths, owes its appearance to the jet stream that forms its perimeter. The jet stream forms a six-lobed, stationary wave which wraps around the north polar regions at a latitude of roughly 77 degrees North.

This view looks toward the sunlit side of the rings from about 37 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on April 2, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers.

The view was obtained at a distance of approximately 1.4 million miles (2.2 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 43 degrees. Image scale is 81 miles (131 kilometers) per pixel.

Image Credit: NASA/JPL-Caltech/Space Science Institute

Tsunami Hits Voyager

An artists concept Voyager 1 spacecraft entering the space between stars. Interstellar space is dominated by plasma, ionized gas (shown here as brownish haze), that was thrown off by giant stars millions of years ago. Image credit: NASA/JPL-Caltech

An artists concept Voyager 1 spacecraft entering the space between stars. Interstellar space is dominated by plasma, ionized gas (shown here as brownish haze), that was thrown off by giant stars millions of years ago. Image credit: NASA/JPL-Caltech

The Voyager 1 spacecraft now has felt another “tsunami wave”, a pressure wave generated by a coronal mass ejection from the sun. The “tsunami wave” takes about a year to reach Voyager and they can tell because of the way the thin plasma around the spacecraft acts.

The weird thing is this plasma is denser than what Voyager was flying through previously.  All of this points to more evidence the Voyagers have entered the area of interstellar space outside our solar bubble.  Yeah that’s way out – Go Voyagers!

More dense? Confused? I was too, read the explanation from the NASA JPL site below:

NASA’s Voyager 1 spacecraft has experienced a new “tsunami wave” from the sun as it sails through interstellar space. Such waves are what led scientists to the conclusion, in the fall of 2013, that Voyager had indeed left our sun’s bubble, entering a new frontier.

“Normally, interstellar space is like a quiet lake,” said Ed Stone of the California Institute of Technology in Pasadena, California, the mission’s project scientist since 1972. “But when our sun has a burst, it sends a shock wave outward that reaches Voyager about a year later. The wave causes the plasma surrounding the spacecraft to sing.”

Data from this newest tsunami wave generated by our sun confirm that Voyager is in interstellar space — a region between the stars filled with a thin soup of charged particles, also known as plasma. The mission has not left the solar system — it has yet to reach a final halo of comets surrounding our sun — but it broke through the wind-blown bubble, or heliosphere, encasing our sun. Voyager is the farthest human-made probe from Earth, and the first to enter the vast sea between stars.
Continue reading

Winnipesaukee

A carapace on Mars and the spectra observed from a laser exam. Image Credit: NASA/JPL-Caltech/LANL/CNES/IRAP/LPGNantes/CNRS/IAS/MSSS

A carapace on Mars and the spectra observed from a laser exam. Image Credit: NASA/JPL-Caltech/LANL/CNES/IRAP/LPGNantes/CNRS/IAS/MSSS

This image from the rover Curiosity is a high-resolution black-and-white from the ChemCam remote micro-imager and a color image provided by the Mastcam. The image show a rock “shell” (not drilled) with laser targets shown as colored circles and below is the chemical composition produced from the laser (spectrographic) examination. The feature is called “Winnipesaukee”.

The laser did the examination from three meters away which is pretty amazing. How was the structure formed? The answer to that question is difficult to answer, but there are some theories.

Check out the results from the spectrographic  exam and the theories how such a feature could occur.

Mount Pinatubo

The Sentinel-1A radar satellite was launched last April and is still in the commissioning phase. This look at part of the Philippine island of Luzon with Mount Pinatubo is pretty nice, looks like the satellite is working quite well.

Earth from Space is presented by Kelsea Brennan-Wessels from the ESA Web-TV virtual studios.

Source

NEOWISE Spies Comet Pan-STARRS

The caption from JPL (link has larger still-images):

NASA’s NEOWISE mission captured this series of pictures of comet C/2012 K1 — also known as comet Pan-STARRS — as it swept across our skies on May 20, 2014. The comet is relatively close to us — it was only about 143 million miles (230 million kilometers) from Earth when this picture was taken. It is seen passing a much more distant spiral galaxy, called NGC 3726, which is about 55 million light-years from Earth, or 2 trillion times farther away than the comet.

Source

Spitzer and Chandra Team up

bhjets

This composite of NGC-4258 is a composite from two space based telescopes the Chandra and Spitzer covering the infrared and x-ray wavelengths.

Infrared to X-ray spectrum

NGC 4258 is also known as M106 for being the 106th entry into Charles Messiers famous catalog. The galaxy is visible in optical light so you can see it with some help of course, at a mag 8.4 a small telescope should do. Have a look in Canes Venatici – more specifically RA=12 19.0, Dec=+47 18.

See M106 at SEDS.

The details from JPL:

A composite image of the spiral galaxy NGC 4258 showing X-ray emission observed with NASA’s Chandra X-ray Observatory (blue) and infrared emission observed with NASA’s Spitzer Space Telescope (red and green).

The infrared emission is produced by hydrogen molecules. A labeled version of the image shows the direction of radio jets, along with the location of the supermassive black hole driving these jets and “hotspots,” where the jets are striking gas in the galaxy. The X-ray and hydrogen emission are both thought to be caused by shocks, similar to a sonic boom from a supersonic plane. The similarity in location between the X-ray and hydrogen emission and the radio jets implies that the jets have caused the shocks.
Continue reading

Gravity Map

Free air gravity map of the Moon.  Credit: NASA

Free air gravity map of the Moon. Credit: NASA

Here is a gravity map of the Moon’s southern area made from data collected by the GRAIL (Gravity Recovery and Interior Laboratory) by S. Goossens and others.

Because the moon is not a smooth homogeneous sphere of equal altitude, gravity varies from area to area, just as it does here on Earth. The GRAIL spacecraft was able to measure gravitational differences from what would occur of the Moon was like a cue ball. The differences are expressed by color, in this case purple is the low end of the range, yellow is average and red is at the high end.

Get an more in-depth explanation at NASA Goddared Space Fight Center’s photostream at Flickr (along with other pictures).

Launch Day

The OCO-2 is ready to go!.  Image credit: NASA

The OCO-2 is ready to go!. Image credit: NASA

Postponed until 02 July at 09:56 UTC (05:56 EDT) – the delay was due to a problem with the noise suppression system at the launch pad and not with the rocket or spacecraft.

This is the launch gantry around the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard. The image was taken 29 June at Space Launch Complex 2 – Vandenberg Air Force Base, Calif.

Launch is scheduled for 09:56 UTC (05:56 EDT). According to NASA:

The weather forecast is essentially unchanged and calls for a 100 percent chance of acceptable conditions at launch time. At liftoff time the temperature will be near 52 degrees, winds from the Northwest at 5-8 knots and a visibility of 1 to 2 miles in coastal fog.

NASA TV coverage at 07:45 to 11:00 UTC (03:45 to 07:00 EDT). The NASA TV link in the banner should work, but if not try here.

NASA LDSD Test Success

The test complete, the NASA LDSD is lifted aboard the Kahana recovery vehicle.  Image via SpaceRef

The test complete, the NASA LDSD is lifted aboard the Kahana recovery vehicle. Image via SpaceRef

The Low-Density Supersonic Decelerator (LDSD) launched yesterday by balloon from the US Navy’s Pacific Missile Range Facility in Kauai, Hawaii.

The balloon was launched at 08:45 local HST and by 11:05 HST the test vehicle was released at an altitude of 120,000 feet or 36.6 km. The decent took a half hour and the est vehicle hardware, black box data recorder and parachute were all recovered later in the day.

This first of three test planned tests designed to determine the flying ability of the vehicle and it also deployed two new landing technologies as a bonus.

The test apparently went very well:

“Because our vehicle flew so well, we had the chance to earn ‘extra credit’ points with the Supersonic Inflatable Aerodynamic Decelerator [SIAD],” said Ian Clark, principal investigator for LDSD at JPL. “All indications are that the SIAD deployed flawlessly, and because of that, we got the opportunity to test the second technology, the enormous supersonic parachute, which is almost a year ahead of schedule.”

Here are a couple of links to video of the test / flight:

LDSD Test Flight part 1

LDSD Test Flight part 2