Category Archives: Cool Stuff

Antarctic Aurora

ESA — This photograph, taken a short hike from the Geographic South Pole in Antarctica, shows some of the antennas comprising the Super Dual Auroral Radar Network (SuperDARN) array. They are visible here as the chain of antennas and wiring stretching away into the distance. The red lights along the horizon in the background are lights marking the entrances to the Amundsen-Scott research station, which lies a good kilometre distant.SuperDARN is a network of radar antennas that monitors and explores the geomagnetic effects occurring in the Earth’s upper atmosphere. While some of these antennas are located at the South Pole, the network stretches worldwide and antennas are found in both the northern and southern hemispheres. One such geomagnetic effect is neatly captured here as wispy curtains and streaks of green filling the dark night sky above the antennas themselves: an aurora.Auroras, informally known as polar lights, form as charged particles from the Sun flow into our region of space, hit the outer boundary of Earth’s magnetic field, and move further inwards to collide with the atoms and molecules in our planet’s atmosphere. The aurora seen here is known as aurora australis, or the southern lights.Such phenomena form a key component of ‘space weather’, dynamic changes in the Earth’s cosmic environment that are driven by the activity of the Sun. As these can affect the function of both space-borne and ground-based systems and services, it’s crucial to monitor space weather in order to predict and mitigate its adverse effects. ESA does so via the Space Situational Awareness Space Weather Segment, and various science missions such as Cluster and Swarm, along with dedicated Sun-watching satellites to better understand our nearest star as a complete system.This image was taken by ESA research fellow Daniel Michalik, who wintered at the Amundsen–Scott South Pole Station in Antarctica in 2017. It was taken as a single long exposure with minor contrast and exposure adjustments. At extremely cold temperatures of -60°C, Daniel was required to layer up, use a hot water bottle to keep the camera warm, and to pack his pockets with plentiful spare batteries. The photographer’s stoicism paid off, as the image was shortlisted as a finalist in the Royal Society photography competition in 2017. Another of Daniel’s images, published here, was the overall winner of the ‘Astronomy’ category.Between 3 and 5 March ESA is highlighting the effects of space weather with the #AuroraHunters SocialSpace event at the other ‘end’ of the planet, in Tromsø, Norway. Follow the conversation on Twitter to see more great aurora images!

Image: Michalik/NSF/SPT

ISS Crossing the Sun

Now THIS is a crossing! Wow, great image. For my attempts and they are not very frequent, something always seems to go awry. Well it is not every day the opportunity comes along. I have a plan though – we will see.

Great job Ian Griffin, the person behind the camera.

ESA caption: Humankind’s most distant outpost was recently captured crossing the face of our enormous and gleaming Sun. The fleeting transit of the International Space Station was over in the blink of an eye, but Ian Griffin, Director at the Otago Museum of New Zealand, made sure he was in the right place to capture it.

“A transit was predicted about 130 km from my home in Dunedin on New Zealand’s South Island. So, I packed my telescope into my car and drove for approximately 2 hours”, explains Ian.

“On Thursday 31 January, at 11:07 NZDT, the International Space Station crossed the Sun in less time than a human heart beats once, and I was there to witness it”.

The Space Station, slightly larger in size than a football field, orbits Earth every 92 minutes. It is one of the most remarkable endeavours our species has ever embarked upon, yet it pales in comparison to the size and power of our star.

This remarkable spectacle serves as a much needed reminder that the people and technology we send into space can be affected by solar activity, and the changing environment .

One of the largest geomagnetic storms on record, the Carrington event of 1859, was caused as a fast coronal mass ejection associated with an enormous solar flare struck Earth’s magnetosphere. The impact created auroras as far north as Queensland, Australia, and as far south as the Caribbean.

Telegraph systems across Europe and North America failed, with reports of some operators receiving electric shocks and telegraph pylons sending out sparks.

Today, a storm of this magnitude would create far greater disruption, as we become ever-more dependent on infrastructure in space and on Earth that is vulnerable to the outbursts of the Sun.

As part of ESA’s Space Safety & Security activities, the Space Weather Office is working to minimise the potential damage and disruption these events can cause. The future Lagrange mission will keep a constant eye on the Sun, sending timely warnings via the Space Weather Service Network to operators and controllers of vital infrastructure, giving them time to take protective measures.

This early warning system will also be of great importance to astronauts and future explorers to the Moon and Mars, who, vulnerable to the radiation emitted during these extreme events will need time to get to safety.

Vega-C Rocket Motor Test


What power! ESA provided a link to a Hi-Res version 3.65 MB, it’s worth the time even on slow connection.

ESA – On 28 January 2019, the first qualification model of the P120C solid-propellant motor, in the configuration for Vega-C, was static fired on the test stand at Europe’s Spaceport in French Guiana.During a burn time of 135 seconds, the P120C delivered a maximum thrust of 4650 kN. No anomalies were seen and the performance met expectations.

Image: ESA

NICER Maps Around Blackhole

NASA Goddard — Scientists have mapped the environment surrounding a black hole that is 10 times the mass of the Sun using NASA’s Neutron star Interior Composition Explorer (NICER) payload aboard the International Space Station. NICER detected X-ray light from a recently discovered black hole, called MAXI J1820+070 (J1820 for short), as it consumed material from a companion star. Waves of X-rays formed “light echoes” that reflected off the swirling gas near the black hole and revealed changes in the environment’s size and shape.

The COW and What?

“Over three days, the Cow produced a sudden explosion of light at least 10 times brighter than a typical supernova, and then it faded over the next few months. This unusual event occurred inside or near a star-forming galaxy known as CGCG 137-068, located about 200 million light-years away in the constellation Hercules. The Cow was first observed by the NASA-funded Asteroid Terrestrial-impact Last Alert System telescope in Hawaii.

So exactly what is the Cow? Using data from multiple NASA missions, including the Neil Gehrels Swift Observatory and the Nuclear Spectroscopic Telescope Array (NuSTAR), two groups are publishing papers that provide possible explanations for the Cow’s origins. One paper argues that the Cow is a monster black hole shredding a passing star. The second paper hypothesizes that it is a supernova — a stellar explosion — that gave birth to a black hole or a neutron star.

‘We’ve never seen anything exactly like the Cow, which is very exciting,” said Amy Lien, an assistant research scientist at the University of Maryland, Baltimore County and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We think a tidal disruption created the quick, really unusual burst of light at the beginning of the event and best explains Swift’s multiwavelength observations as it faded over the next few months.’ ” — NASA

And in an unrelated bit: did you hear about the mysterious radio signals picked up by the CHIME radio telescope? What is causing the fast radio bursts is unknown, there is even speculation that these are intentional pulses i.e. from aliens. I don’t think I’d go that far, but just what is causing them is a mystery nonetheless. A pretty good explanation can be found at Scientific American.

Perhaps we will see a lot more of them as times goes on with the CHIME radio telescope.

SpaceBok Hops Along

I have to say it, yes right here: I love this thing. According to the press release below, the SpaceBok could jump as high as 4 meters if it were on the moon! I was going to try and describe the motion then I thought a video would be perfect and then remembered the first video I saw of the SpaceBok and even found it – see below.

ESA’s caption: This walking and hopping robot is currently being tested in ESA’s Mars Yard.

SpaceBok is a quadruped robot designed by a Swiss student team from ETH Zurich and ZHAW Zurich, under the supervision of Professor Marco Hutter and PhD student Hendrik Kolvenbach, for future missions to the Moon or Mars.

“Legged robots can traverse unstructured terrain and could be used to explore areas of interest, such as craters, which rovers are unable to reach,” explains team member Patrick Barton. “As they are very versatile, they can change gait to adapt to different terrain.”

“In contrast to other legged robots, SpaceBok is primarily built for hopping,” adds team member Elias Hampp. “While this is not particularly useful on Earth, it could reach a height of four metres on the Moon. This would allow for a fast and efficient way of moving forward.”

““We are currently implementing and testing vision sensors, to increase SpaceBok’s autonomy and robustness,” says team member Radek Zenkl.

ESA’s 8 x 8 m Mars Yard ‘sandbox’, filled with different sizes of sand, gravel, and rock, is part of the Planetary Robotics Laboratory at the Agency’s ESTEC technical centre in Noordwijk, the Netherlands.

Leaving Mars – Fairwell MarCO’s

Another successful aspect of InSight mission was the two tiny cubesats MarCO’s A and B. The pair accompanied InSight on the journey to Mars and demonstrated their ability to act as communications relays.

The success of the MarCO satellites probably will ensured a bright future for such satellites in future mission. Well done!

NASA: MarCO-B, one of the experimental Mars Cube One (MarCO) CubeSats, took this image of Mars from about 4,700 miles (6,000 kilometers) away during its flyby of the Red Planet on Nov. 26, 2018. MarCO-B was flying by Mars with its twin, MarCO-A, to attempt to serve as communications relays for NASA’s InSight spacecraft as it landed on Mars. This image was taken at about 12:10 p.m. PST (3:10 p.m. EST) while MarCO-B was flying away from the planet after InSight landed.

Image: NASA/JPL-Caltech