Category Archives: Cool Stuff

ESO Kilonovae

What? Wow, this is GREAT! Not just the initial discovery, but what actually happened, two neutron stars colliding and by the way that was “only” 130 million light-years away. Close enough.

Congratulations ESO!!!

ESO — For the first time ever, astronomers have observed both gravitational waves and light (electromagnetic radiation) from the same event, thanks to a global collaborative effort and the quick reactions of both ESO’s facilities and others around the world.

ESO’s fleet of telescopes in Chile have detected the first visible counterpart to a gravitational wave source. These historic observations suggest that this unique object is the result of the merger of two neutron stars. The cataclysmic aftermaths of this kind of merger — long-predicted events called kilonovae — disperse heavy elements such as gold and platinum throughout the Universe. This discovery, published in several papers in the journal Nature and elsewhere, also provides the strongest evidence yet that short-duration gamma-ray bursts are caused by mergers of neutron stars.

Read the whole story – except what they were actually doing at the time – be fun to hear about the first few moments of realization of what was going on.

Planetary Formation Studied

Very interesting take on how dust can turn into a planet from the University of Exeter.

The University press release:

A new study by an international team of scientists, led by Stefan Kraus from the University of Exeter, has given a fascinating new insight into one of the most respected theories of how planets are formed.

Young stars start out with a massive disk of gas and dust that over time, astronomers think, either diffuses away or coalesces into planets and asteroids.

However, scientists are still searching for a complete understanding of how these early formations come together to form asteroid-sized objects. One reason has been that drag in the disk produced by surrounding gas makes the grains move inward toward the star – which can in turn deplete the disk rapidly in a process known as “radial drift.”
In the new research, the team use high powered telescopes to target the star V1247 Orionis -, a young, hot star surrounded by a dynamic ring of gas and dust.

The team produced a detailed image of the star and its surrounding dust disc, shown in two parts: a clearly defined central ring of matter and a more delicate crescent structure located further out.
The region between the ring and crescent, visible as a dark strip, is thought to be caused by a young planet carving its way through the disc. As the planet moves around in its orbit, its motion creates areas of high pressure on either side of its path, similar to how a ship creates bow waves as it cuts through water.

These areas of high pressure could become protective barriers around sites of planet formation; dust particles are trapped within them for millions of years, allowing them the time and space to clump together and grow.
Professor Kraus said: “The exquisite resolution of ALMA allowed us to study the intricate structure of such a dust-trapping vortex for the first time. The crescent in the image constitutes a dust trap that formed at the outer edge of the dark strip.

“It also reveals regions of excess dust within the ring, possibly indicating a second dust trap that formed inside of the putative planet’s orbit. This confirms earlier computer simulations that predicted that dust traps should form both at the outer edge and inner edge of disc gaps.

“Dust trapping is one potential solution to a major stumbling block in our theories of how planets form, which predicts that particles should drift into the central star and be destroyed before they have time to grow to planetesimal sizes.”

Dust-trapping vortices and a potentially planet-triggered spiral wake in the pre-transitional disk of V1247 Orionis is published in Astrophysical Journal Letters.

Credit: University of Exeter

Get Your Name on Mars

It is the last couple of weeks for you to put your name aboard the InSight lander to be launched in November of 2018.

If you have not done so, NASA has added a second microchip so there are MORE spots available for your name. Signing up is free and simple so click here and join me on the spacecraft! You have until 21 November 2017 to sign up, don’t forget to print out your boarding pass too.

JPL/Andrew Good – “Mars continues to excite space enthusiasts of all ages,” said Bruce Banerdt, the InSight mission’s principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, California. “This opportunity lets them become a part of the spacecraft that will study the inside of the Red Planet.”

This fly-your-name opportunity comes with “frequent flier” points reflecting an individual’s personal participation in NASA’s exploration of Mars. These points span multiple missions and multiple decades. Participants who sent their names on the previous InSight opportunity in 2015 can download a “boarding pass” and see their “frequent flier” miles.

As part of this frequent flier program, a chip carrying the names of 1.38 million people also flew aboard the first flight of NASA’s Orion spacecraft in 2014. NASA is building Orion to carry astronauts to deep space destinations that will enable future missions to Mars.

After InSight, the next opportunity to earn frequent flier points will be NASA’s Exploration Mission-1, the first flight bringing together the Space Launch System rocket and Orion spacecraft to travel thousands of miles beyond the Moon in preparation for human missions to Mars and beyond.

InSight will be the first mission to explore Mars’ deep interior. The spacecraft will set down a seismometer to detect marsquakes and meteor strikes, using the seismic energy of these phenomena to study material far below the Martian surface. It also will deploy a self-hammering heat probe that will burrow deeper into the ground than any previous device on the Red Planet. These and other InSight investigations will improve our understanding about the formation and evolution of all rocky planets, including Earth.

InSight is scheduled to launch from Vandenberg Air Force Base, California, in May of 2018.

Artwork: NASA/JPL-Caltech

THEMIS Records Phobos


Normally the Thermal Emission Imaging System (THEMIS) camera onboard the Odyssey orbiter is pointing towards the surface of Mars. Recently researchers developed a manuver to turn the orbiter around around so that a series of scans could be made of the Martian moon Phobos and they did just that on 29 September 2017.

The top image is a visible light image, actually part of a 19 image series that were put together into an animation. You can see the animation here (opens in a new tab) and the apparent motion you see is not from the motion of Phobos, rather it’s from the progression of the camera’s pointing during the 18-second span of the observation.

In bottom image the left edge of the small moon was in darkness, and the right edge in morning sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). The distance to Phobos from Odyssey during the observation was about 3,424 miles (5,511 kilometers).

These and possibly future observations will allow researchers to analyze the surface-temperature information from this observation and possible future THEMIS observations to learn how quickly the surface warms after sunup or cools after sundown. That could provide information about surface materials, because larger rocks heat or cool more slowly than smaller particles do. The thermal information in this image is from merging observations made in four thermal-infrared wavelength bands, centered from 11.04 microns to 14.88 microns.

Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). Odyssey orbits Mars at an altitude of about 250 miles (400 kilometers), much closer to the planet than to Phobos, which orbits about 3,700 miles (6,000 kilometers) above the surface of Mars. The distance to Phobos from Odyssey during this observation was about 3,424 miles (5,511 kilometers).

THEMIS was developed by and is operated by a team based at Arizona State University, Tempe. NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Mars Odyssey mission for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter and partners in its operation. JPL is a division of Caltech in Pasadena.

Image Credit: NASA/JPL-Caltech/ASU

Tabby’s Star

Spitzer, Swift and AstroLAB are now involved in observing this very strange star and now maybe we are getting some answers:

Goddard/NASA – This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian’s Star or Tabby’s Star. Astronomers have found the dimming of the star over long periods appears to be weaker at longer infrared wavelengths of light and stronger at shorter ultraviolet wavelengths. Such reddening is characteristic of dust particles and inconsistent with more fanciful “alien megastructure” concepts, which would evenly dim all wavelengths of light.

By studying observations from NASA’s Spitzer and Swift telescopes, as well as the Belgian AstroLAB IRIS observatory, the researchers have been able to better constrain the size of the dust particles. This places them within the range found in dust disks orbiting stars, and larger than the particles typically found in interstellar dust.

The system is portrayed with a couple of comets, consistent with previous studies that have found evidence for cometary activity within the system.

Wait. . . hold on, alien megastuctures?

Well sort of, here watch this TED Talk by none other than astronomer Tabetha Boyajian:

Heat Shield Testing

I am trying to figure out how they keep the thermocouple wires to keep from burning off.

NASA – NASA heat shield material that could one day be used on an inflatable aeroshell during atmospheric entry on Mars recently underwent testing at Boeing’s Large Core Arc Tunnel in St. Louis, Missouri.

The inflatable aeroshell, using high temperature advanced flexible material systems, will enable atmospheric entry to planetary bodies and the landing of heavy payloads. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is focused on development of the inflatable aeroshell technology and manufacturing capability at large scale, to support an orbital atmospheric entry flight experiment at Earth and Mars. HIAD overcomes size and weight limitations of current rigid systems by utilizing inflatable soft-goods materials that can be packed into a small volume and deployed to form a large aeroshell before atmospheric entry.

Critical to the development of the technology is development of flexible material systems whose performance must be verified through arc jet testing. During early August testing, small cutouts of the Flexible Thermal Protection System (F-TPS), about 2.5 inches (6.4 cm) in diameter and anywhere from a half-inch (1.3 cm) to 1 inch (2.5 cm) thick, were placed in a supersonic wind tunnel and blasted with jets of superheated plasma gas. The plasma gas hit the cutouts at speeds of Mach 4 or more, and heated the surfaces to temperatures up to approximately 2,700 F. Thermocouples embedded in the samples measured the material’s response to the superheated conditions.

Researchers calibrated tunnel pressure and temperature to be similar to the range of conditions HIADs would face during atmospheric entry on Earth and Mars. The data from these tests will be used to validate mathematical models used for design.

The test team included researchers Steven Tobin, Matt Wells and Andrew Brune of NASA’s Langley Research Center in Hampton, Virginia; and Grant Rossman, a Ph.D. candidate at the Georgia Institute of Technology in Atlanta.

HIAD technology is being developed by researchers at Langley through NASA’s Game Changing Development program, which is part of the agency’s Space Technology Mission Directorate. The program advances space technologies that may lead to entirely new approaches to space missions.

Image: Boeing / NASA

Solar Flare Caught on iPhone

Pretty amazing, catching a solar flare on an iPhone! Not my phone to be sure and I’ve tried. Leave it to ESA, actually they got a lucky break in a way. I want to see the filter they used too!

ESA — A group of astronomers at ESA’s ESTEC were testing some solar observing equipment on 6 September and serendipitously captured a solar flare, which turned out to be one of the most powerful observed in the last decade.

The image shown here was taken with an iPhone through a special interference H-alpha filter (centred at the wavelength of hydrogen emission) mounted to a small dedicated solar telescope at 13:09:26 GMT. An X9.3 flare was observed to launch from the Sun by space telescopes at 12:02 GMT, meaning that this image was taken as the flare was in the gradual decay phase.

The flare is seen as the white cloudy feature with multiple ribbons towards the bottom right of the image. It appears as a lighter feature against the solar background average because of post-flare energy release visible in hydrogen emission from interconnected magnetic loops. North is up.

Image: ESA/T.Baumann/B.Foing/J.Zender