Venus Express

After eight years in orbit, ESA’s Venus Express has completed routine science observations and is preparing for a daring plunge into the planet’s hostile atmosphere.

Venus Express was launched on 9 November 2005, and arrived at Venus on 11 April 2006.

It has been orbiting Venus in an elliptical 24-hour loop that takes it from a distant 66 000 km over the south pole — affording incredible global views — to an altitude of around 250 km above the surface at the north pole, close to the top of the planet’s atmosphere.

With a suite of seven instruments, the spacecraft has provided a comprehensive study of the ionosphere, atmosphere and surface of Venus.

This video includes interviews in English with Håkan Svedhem, ESA mission scientist and Patrick Martin, ESA Venus Express mission manager

Mount Pinatubo

The Sentinel-1A radar satellite was launched last April and is still in the commissioning phase. This look at part of the Philippine island of Luzon with Mount Pinatubo is pretty nice, looks like the satellite is working quite well.

Earth from Space is presented by Kelsea Brennan-Wessels from the ESA Web-TV virtual studios.


Rosetta Update

Comet 67P/C-G on 4 June. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Comet 67P/C-G on 4 June. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Here’s the latest image of 67P/Churyumov–Gerasimenko from ESA’s Rosetta spacecraft. Mission managers have been busy with a series of maneuvers designed to bring the spacecraft in line with the comet for the August rendezvous.

The journey for Rosetta has been underway for 10-years, beginning in February 2004 when it was launched from Kourou in French Guiana. It will soon reach its destination 67P/Churyumov–Gerasimenko and even now Rosetta is taking data about the comet.

The comet appeared to show some activity in the last image from Rosetta but not so much in this one. As Emily at the Rosetta blog posts: Expect the Unexpected

Venus Express

This sequence of images was taken by the Ultraviolet/Visible/Near-Infrared spectrometer (VIRTIS) on board ESA’s Venus Express - see link below.   Credits: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA

This sequence of images was taken by the Ultraviolet/Visible/Near-Infrared spectrometer (VIRTIS) on board ESA’s Venus Express – see link below. Credits: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA

The ESA Venus Express has been orbiting our neighboring planet for eight-years and is about to come to an end with one final contribution.

The Venus Express will begin an aerobraking maneuver and enter the atmosphere of the planet. The aerobraking phase was planned for 18 June to 11 July, during which time the spacecraft will be able to sample from altitudes not accessible in orbit.

We should hear something soon.

In the mean time.

Galactic Fingerprint


ESA’s Planck satellite gets the Milky Way’s magnetic fingerprint. Image: ESA

The ESA Planck satellite took this image of polarized light emission from interstellar dust. The darker regions (as you can read below) are the more strongly polarized. I am a little surprised by the amount of polarization away from the galactic equator, I thought it would have been more uniform. The full report will be coming out later this year.

Polarized light has been coming up quite frequently in different stories as of late.

Here’s the full explanation from ESA.

The ESA short version:

The magnetic field of our Milky Way Galaxy as seen by ESA’s Planck satellite. This image was compiled from the first all-sky observations of polarised light emitted by interstellar dust in the Milky Way. The magnetic field is displayed using a visualisation technique called line integral convolution (LIC).

Darker regions correspond to stronger polarised emission, and the striations indicate the direction of the magnetic field projected on the plane of the sky. The dark band running horizontally across the centre corresponds to the Galactic Plane. Here, the polarisation reveals a regular pattern on large angular scales, which is due to the magnetic field lines being predominantly parallel to the plane of the Milky Way. The data also reveal variations of the polarisation direction within nearby clouds of gas and dust. This can be seen in the tangled features above and below the plane, where the local magnetic field is particularly disorganised.

The image is a Mollweide projection of the full celestial sphere, with the plane of the Galaxy aligned with the horizontal axis of the oval. Certain areas in the image, mostly at high Galactic latitude, have been masked out. The overall intensity in these regions is low, complicating the separation of foreground and CMB components. Further data analysis will improve this by the time of the full data release in late 2014.

The Tadpole

The Tadpole and the Wriggler. Click for larger. Copyright NASA, ESA, the Hubble Heritage Team (STScI/AURA), and IPHAS

I want to see the Goldfish. Ok I spent five minutes looking for it until I re-read the press release and the bit about it being just out of view. Larger and full-res versions availble at the link below.

BTW, I LOVE the title from ESA for selfish reasons. LOL.

From ESA Spaceinimages (The Tadpole and the Wriggler):

A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed “the Tadpole”, this clump of gas and dust has given birth to a bright protostar, one of the earliest steps in building a star.

There are actually multiple protostars within this tadpole’s ‘head’, but the glowing yellow one in this image is the most luminous and massive. When this protostar has gathered together enough mass from its surroundings, it will eventually emerge as a fully-fledged young star.

Continue reading

Ride Along

Watch this! They (Airanespace) call it remarkable, I call that an understatement!  This is astounding is what it is.

One of the many really cool video showing up recently.

This from Arianespace:

Remarkable images from on-board cameras provide a detailed “ride-along” view of Arianespace’s Flight VS07, which orbited Europe’s Sentinel-1A from the Spaceport in French Guiana.

Recorded during the 23-minute mission on April 3, multiple cameras covered the action from final countdown to separation of the mission’s payload.

The Arianespace/European Space Agency/Roscosmos-copyrighted video begins with the pre-launch steps as seen from two cameras – mounted on opposite sides of the medium-lift launcher.

Looking down from the launcher’s upper portion, the opening sequence includes separation of umbilical connections for Soyuz’ Fregat upper stage, followed by the tilt-back of two umbilical masts. One of these masts provides fluids and electrical connections for the launcher’s Block I third stage, while the second mast services the Soyuz vehicle’s Block A core stage.

Soyuz’ engine ignition is clearly seen in the video with the startup sequence for the first stage’s four boosters and central core second-stage. This is followed by liftoff and the opening of four arms that supported the vehicle while on the pad – and which are opened by Soyuz’ upward movement.
Continue reading