Category Archives: ESO

ESO Main Mirror Recoating

I got a chuckle out of the caption for the video: This video takes a relaxed look at a tense process — cleaning and recoating the surface of one of the ESO Very Large Telescope’s 8.2-metre main mirrors.

Tense indeed!

ESO Kilonovae

What? Wow, this is GREAT! Not just the initial discovery, but what actually happened, two neutron stars colliding and by the way that was “only” 130 million light-years away. Close enough.

Congratulations ESO!!!

ESO — For the first time ever, astronomers have observed both gravitational waves and light (electromagnetic radiation) from the same event, thanks to a global collaborative effort and the quick reactions of both ESO’s facilities and others around the world.

ESO’s fleet of telescopes in Chile have detected the first visible counterpart to a gravitational wave source. These historic observations suggest that this unique object is the result of the merger of two neutron stars. The cataclysmic aftermaths of this kind of merger — long-predicted events called kilonovae — disperse heavy elements such as gold and platinum throughout the Universe. This discovery, published in several papers in the journal Nature and elsewhere, also provides the strongest evidence yet that short-duration gamma-ray bursts are caused by mergers of neutron stars.

Read the whole story – except what they were actually doing at the time – be fun to hear about the first few moments of realization of what was going on.

MUSE and the Saturn Nebula


ESO — The Saturn Nebula is located approximately 5000 light years away in the constellation of Aquarius (The Water Bearer). Its name derives from its odd shape, which resembles everyone’s favourite ringed planet seen edge-on.

But in fact, planetary nebulae have nothing to do with planets. The Saturn Nebula was originally a low-mass star, which expanded into a red giant at the end of its life and began to shed its outer layers. This material was blown out by strong stellar winds and energised by ultraviolet radiation from the hot stellar core left behind, creating a circumstellar nebula of dust and brightly-coloured hot gas. At the heart of the Saturn Nebula lies the doomed star, visible in this image, which is in the process of becoming a white dwarf [1].

In order to better understand how planetary nebulae are moulded into such odd shapes, an international team of astronomers led by Jeremy Walsh from ESO used the Multi Unit Spectroscopic Explorer (MUSE) to peer inside the dusty veils of the Saturn Nebula. MUSE is an instrument installed on one of the four Unit Telescopes of the Very Large Telescope at ESO’s Paranal Observatory in Chile. It is so powerful because it doesn’t just create an image, but also gathers information about the spectrum — or range of colours — of the light from the object at each point in the image.

The team used MUSE to produce the first detailed optical maps of the gas and dust distributed throughout a planetary nebula [2]. The resulting image of the Saturn Nebula reveals many intricate structures, including an elliptical inner shell, an outer shell, and a halo. It also shows two previously imaged streams extending from either end of the nebula’s long axis, ending in bright ansae (Latin for “handles”).

Intriguingly, the team also found a wave-like feature in the dust, which is not yet fully understood. Dust is distributed throughout the nebula, but there is a significant drop in the amount of dust at the rim of the inner shell, where it seems that it is being destroyed. There are several potential mechanisms for this destruction. The inner shell is essentially an expanding shock wave, so it may be smashing into the dust grains and obliterating them, or producing an extra heating effect that evaporates the dust.

Mapping the gas and dust structures within planetary nebulae will aid in understanding their role in the lives and deaths of low mass stars, and it will also help astronomers understand how planetary nebulae acquire their strange and complex shapes.

But MUSE’s capabilities extend far beyond planetary nebulae. This sensitive instrument can also study the formation of stars and galaxies in the early Universe, as well as map the dark matter distribution in galaxy clusters in the nearby Universe. MUSE has also created the first 3D map of the Pillars of Creation in the Eagle Nebula (eso1518) and imaged a spectacular cosmic crash in a nearby galaxy (eso1437).

Notes
[1] Planetary nebulae are generally short-lived; the Saturn Nebula will last only a few tens of thousands of years before expanding and cooling to such an extent that it becomes invisible to us. The central star will then fade as it becomes a hot white dwarf.

[2] The NASA/ESA Hubble Space Telescope has previously provided a spectacular image of the Saturn Nebula — but, unlike MUSE, it cannot reveal the spectrum at each point over the whole nebula.

Image: ESO

Adaptive Optics at the ESO

The new Adaptive Optics Facility (AOF) at the European Southern Observatory is up and running. This image of the planetary nebula IC 4406 was one of the first-light images taken with the MUSE instrument combined with the AOF. The detail is amazing. You can get larger, desktop versions of this from the ESO — click here.

Located in the constellation Lupus the nebula is about 2000 light-years (or 600 parsecs) away.

No wonder the ESO is one of the premier observatories in the world.

Credit: ESO/J. Richard (CRAL

The story from the ESO:
The Adaptive Optics Facility (AOF) is a long-term project on ESO’s Very Large Telescope (VLT) to provide an adaptive optics system for the instruments on Unit Telescope 4 (UT4), the first of which is MUSE (the Multi Unit Spectroscopic Explorer) [1]. Adaptive optics works to compensate for the blurring effect of the Earth’s atmosphere, enabling MUSE to obtain much sharper images and resulting in twice the contrast previously achievable. MUSE can now study even fainter objects in the Universe.
Continue reading

How To Get Observing Time

Observing time on the world-class observatories is limited and highly sought after by researchers.  It is not an easy undertaking, here’s a video about it’s done from the ESO.

The Helmet Nebula

Here is the Helmet Nebula also known as NGC 2359 is 15,000 light-years away in the constellation of Canis Major.

ESO – This VLT image of the Thor’s Helmet Nebula was taken on the occasion of ESO’s 50th Anniversary, 5 October 2012, with the help of Brigitte Bailleul — winner of the Tweet Your Way to the VLT! competition. The observations were broadcast live over the internet from the Paranal Observatory in Chile. This object, also known as NGC 2359, lies in the constellation of Canis Major (The Great Dog). The helmet-shaped nebula is around 15 000 light-years away from Earth and is over 30 light-years across. The helmet is a cosmic bubble, blown as the wind from the bright, massive star near the bubble’s centre sweeps through the surrounding molecular cloud.

Credit: ESO/B. Bailleul

ALMA and Solar Science

Global cooperation is the hallmark of ALMA and much of science for that matter. The ALMA Solar campaign is one of the most diverse, take a look below the fold at the end of the press release.

This image of an enormous sunspot was taken on 18 December 2015 with the Band 6 receiver at a wavelength of 1.25 millimeters.

ALMA Reveals Sun in New Light

New images from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal stunning details of our Sun, including the dark, contorted center of an evolving sunspot that is nearly twice the diameter of the Earth.

These images are part of the testing and verification campaign to make ALMA’s solar observing capabilities available to the international astronomical community.

Though designed principally to observe remarkably faint objects throughout the universe — such as distant galaxies and planet-forming disks around young stars – ALMA is also capable of studying objects in our own solar system, including planets, comets, and now the Sun.

During a 30-month period beginning in 2014, an international team of astronomers harnessed ALMA’s single-antenna and array capabilities to detect and image the millimeter-wavelength light emitted by the Sun’s chromosphere — the region that lies just above the photosphere, the visible surface of the Sun.

These new images demonstrate ALMA’s ability to study solar activity at longer wavelengths than observed with typical solar telescopes on Earth, and are an important expansion of the range of observations that can be used to probe the physics of our nearest star.

“We’re accustomed to seeing how our Sun appears in visible light, but that can only tell us so much about the dynamic surface and energetic atmosphere of our nearest star,” said Tim Bastian, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Va. “To fully understand the Sun, we need to study it across the entire electromagnetic spectrum, including the millimeter and submillimeter portion that ALMA can observe.”

Since our Sun is many billions of times brighter than the faint objects ALMA typically observes, the solar commissioning team had to developed special procedures to enable ALMA to safely image the Sun.

The result of this work is a series of images that demonstrates ALMA’s unique vision and ability to study our Sun on multiple scales.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Continue reading

Active Galactic Nucleus

ic3639

The galaxy above called IC-3639 has an Active Galactic Nucleus that is actually obscured which leads to even more questions.  AGN’s are super-massive black holes (in the order of a million to probably hundreds of million solar masses) that are accreting massive amounts of matter, which is to say “feeding”. The accretion disc makes the Active Galaxies among the brightest objects in terms of electromagnetic radiation, so bright it is not often whether or not a galaxy is active, is in question, IC 3639 is such a galaxy.

A word about black holes in general because some people have a mistaken impression of black holes as marauding monsters roaming the universe looking for innocent planets to swallow up, that just came up on an outing with friends. No, a black holes don’t really do that. In fact if you took a black hole of one-solar-mass and swapped it with our Sun our solar system would just keep right on going just like it does now, aside from light and heat of course, the fabric of space-time would be just as it is now.

From NuSTAR:
IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory.

This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA’s Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed.

NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.

Image and caption: NASA/JPL-Caltech/ESO/STScI

Proxima Centuri’s Orbit

proximacentury

Credit:  P. Kervella (CNRS/U. of Chile/Observatoire de Paris/LESIA), ESO/Digitized Sky Survey 2, D. De Martin/M. Zamani

From the ESO:

Interest in our neighbouring Alpha Centauri star system has been particularly high since the recent discovery of an Earth-mass planet, known as Proxima b, orbiting the system’s third star — and the closest star to the Sun — Proxima Centauri. While the system’s larger stellar pair, Alpha Centauri A and B, appear to have a proper motion on the sky that is very similar to that of the smaller, fainter Proxima Centauri, it has not been possible to demonstrate that the three stars do actually form a single, gravitationally bound, triple system.

Now three astronomers, Pierre Kervella, Frédéric Thévenin and Christophe Lovis, have concluded that the three stars do indeed form a bound system. In the century since it was discovered, Proxima Centauri’s faintness has made it extremely difficult to reliably measure its radial velocity — the speed at which it moves towards and away from Earth. But now ESO’s planet-hunting HARPS instrument has provided an extremely precise measurement of Proxima Centauri’s radial velocity, and even greater accuracy has been achieved by accounting for other subtle effects [1].

As a result, the astronomers have been able to deduce very similar values for the radial velocities of the Alpha Centauri pair and Proxima Centauri, lending credence to the idea that they form a bound system. Taking account of these new measurements, calculations of the orbits of the three stars indicate that the relative velocity between Proxima Centauri and the Alpha Centauri pair is well below the threshold above which the three stars would not be bound together by gravity.

This result has significant implications for our understanding of the Alpha Centauri system and the formation of planets there. It strongly suggests that Proxima Centauri and the Alpha Centauri pair are the same age (about 6 billion years), and that in turn provides a good estimate of the age of the orbiting planet, Proxima b.

The astronomers speculate that the planet may have formed around Proxima Centauri on a more extended orbit and then been brought to its current position, very close to its parent star, as a result of the close passage of Proxima Centauri to its cousins in the Alpha Centauri pair. Alternatively, the planet may have formed around the Alpha Centauri pair, and was later captured by the gravity of Proxima Centauri. If one of these hypotheses is correct, it is possible that the planet was once an icy world that underwent a meltdown and now has liquid water on its surface.

A Real Goldilocks Planet

WOW!  Pretty excellent work from the ESO!

A review of the data from shows  tiny Doppler shifts indicate the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting around Proxima Centauri and just 7 million kilometres/ 4.3 million miles and that’s  only 5% of the Earth-Sun distance.  The orbital period (that’s a year) of the planet is 11.2 DAYS!

Yes, for Proxima Centauri that is still in the habitable zone.  Proxima Centauri is around 8.25 light-years away far enough to make further investigation difficult.

Difficult is not impossible. . . stay tuned,  as they say on the television.

ESO Video