Category Archives: NASA

Asteroid Bennu Here We Come

After a journey of 1.8 million km / 1.1 billion miles the A very exciting mission OSIRIS-REx has its target in sight – Asteroid Bennu. After a two-year journey the spacecraft is finally in the “approach phase” of the mission

OSIRIS-REx will arrive at Bennu on 03 December. There is a lot to do and learn before then.

“During the mission’s approach phase, OSIRIS-REx will:

regularly observe the area around the asteroid to search for dust plumes and natural satellites, and study Bennu’s light and spectral properties;

execute a series of four asteroid approach maneuvers, beginning on Oct. 1, slowing the spacecraft to match Bennu’s orbit around the Sun;

jettison the protective cover of the spacecraft’s sampling arm in mid-October and subsequently extend and image the arm for the first time in flight; and

use OCAMS to reveal the asteroid’s overall shape in late-October and begin detecting Bennu’s surface features in mid-November.” — NASA

SLS RS-25 Engine Test

Note: The original version of this post was supposed to publish on the 16th. I am still trying to figure out what went wrong. Here’s a second try.

What an engine!

NASA (Valerie Buckingham): Stennis Space Center showcased what it does best for new NASA Administrator Jim Bridenstine on Aug. 14, hosting the agency leader for the first in another series of RS-25 rocket engine hot fire tests in support of NASA’s Space Launch System (SLS) Program.

Operators conducted a successful test of RS-25 developmental engine No. 0525 – complete with a new flight controller unit – on the A-1 Test Stand as Bridenstine and other agency officials watched. The visit was Bridenstine’s first to the south Mississippi center since he was confirmed as administrator in April.

“I have witnessed rocket launches before, but this was a new and unique experience,” Bridenstine said following the test. “It was like watching a launch, but it never leaves the ground, and you can feel the power of the engine within your body. And what the power of this RS-25 engine represents is America’s ability to fly deeper into space than we ever did before. This was a great test.”

“It was an honor to host Administrator Bridenstine and to provide him an opportunity to see the Stennis test team work,” Stennis Director Rick Gilbrech said. “It also is an honor to be part of the effort under way to help move this nation to the Moon again, then on to Mars.”

The Aug. 14 hot fire was the first RS-25 test at Stennis since February, when operators powered the engine to its highest operating level ever. It also was the first test of developmental engine No. 0525 since August 2015. It marked the first in a series of nine scheduled tests on engine No. 0525 through the rest of the year and into 2019. Each will feature an RS-25 flight controller for use on an actual SLS mission, as well as testing engine components made with innovative manufacturing designed to reduce the cost of future engines. All test objectives were met during the hot fire.

NASA is building the SLS rocket as the largest, most powerful space vehicle in history to return humans to deep space missions. The SLS rocket will launch crews of up to four astronauts aboard the Orion spacecraft to explore various deep-space destinations, including the Moon and Mars.

Each SLS rocket will be powered at launch by four RS-25 engines firing simultaneously to provide a combined 2 million pounds of thrust and working in conjunction with a pair of solid rocket boosters to provide more than 8 million pounds of thrust. RS-25 engines are being built by Aerojet Rocketdyne for the SLS flights.

The initial RS-25 engines are former space shuttle main engines. For initial SLS flights, the engines will be operated at 109 percent of rated power. For subsequent SLS flights, designed to carry larger, heavier cargos and the crew vehicle to deep space, the engines have been modified to operate at 111 percent of rated power. To date, Stennis has conducted 22 tests running with engines operating just over 10,000 cumulative seconds for SLS.

A key component of latest modification is the controller, which operates as the “brain” of the engine to help it communicate with the rocket and to provide precision control of engine operation and internal health diagnostics.

Stennis tested the first RS-25 flight controller in March 2017. For the testing, flight controller units are installed on a developmental engine and fired just as during an actual launch. Once tested and certified, the controllers are removed for installation on an RS-25 flight engine.

To get the most out of each test, NASA is not only testing the flight controllers, but also is testing parts of the engine that can be made using new manufacturing techniques. When new engines are produced, components can be made with these advanced processes, and the engine production cost can be reduced by more than 30 percent. This test featured a main combustion chamber fabricated using a bonding technique called hot isostatic pressing (HIP), which saves considerable time and money over more traditional methods. The HIP process uses high pressure and heat to create bonds that can withstand extreme stress. It already has been used on main combustion chambers in two other Aerojet Rocketdyne engines.

The Aug. 14 hot fire also represented the fifth test of a 3D-printed pogo accumulator assembly, a critical component that dampens potential engine propellant pressure oscillations that can cause a rocket to become unstable in flight. Testing of the 3D-printed component also is part of the ongoing effort to use advanced manufacturing to reduce engine construction costs. NASA and Aerojet Rocketdyne plan to test a number of 3D-printed components for the RS-25 engine.

In addition to testing individual RS-25 engines and components, Stennis is preparing to test the core stage for the first SLS flight – Exploration Mission-1 – which will showcase the new rocket and send an uncrewed Orion spacecraft into space beyond the Moon. For that testing, the flight core stage will be installed on the B-2 Test Stand at Stennis, and all four RS-25 engines will be fired simultaneously.

The first flight will be followed by Exploration Mission-2, which will carry humans aboard the Orion spacecraft, returning astronauts to deep space for the first time in more than 40 years. This mission will also be powered by Stennis-tested engines.

RS-25 tests at Stennis are conducted by a team of NASA, Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the RS-25 prime contractor. Syncom Space Services is the prime contractor for Stennis facilities and operations.

ECOSTRESS First Light

Not wasting any time getting ECOSTRESS operational. Launched on 29 June, then (robotically) unpacked and transferred to the Japanese Experiment Module – Exposed Facility and installed it on 05 July. This image was taken just days after that on 09 July.

Image: NASA/JPL-Caltech

NASA: ECOSTRESS acquired this image the night of July 9, 2018, over Egypt. Yellow and red indicate generally higher temperatures. The River Nile is visible as a thin blue line on the main image. The black-and-white inset shows the level of detail available from ECOSTRESS, with the relatively cool Nile River and surrounding vegetation appearing darker.

JPL built and manages the ECOSTRESS mission for NASA’s Earth Science Division in the Science Mission Directorate at NASA Headquarters in Washington. ECOSTRESS is an Earth Venture Instrument mission; the program is managed by NASA’s Earth System Science Pathfinder program at NASA’s Langley Research Center in Hampton, Virginia.

For more information on ECOSTRESS visit https://ecostress.jpl.nasa.gov/.

Will the Parker Solar Probe Melt?

Since the Parker Solar Probe will only be 3.8 million miles from the Sun temperatures in the operating area are estimated to be 1,377 degrees C (2,500 F). Yes the spacecraft could in theory melt. Unless of course you have a very robust solution and as it happens the spacecraft will be protected by an 11.4 cm / 4.5 inch carbon composite heat shield.

A demonstration:

What About TESS?

What is going on with the newest exoplanet detecting spacecraft – TESS? By all accounts we are moving closer to the start of observations.

I tend to be amused by the mission as I get the feeling TESS already has more work than it can do. Oh it’s a great position to be in but the “poor” mission team has to decide the observational priorities. I’d like to be a fly on the wall during some of those meetings!

NASA: After a successful launch on April 18, 2018, NASA’s newest planet hunter, the Transiting Exoplanet Survey Satellite, is currently undergoing a series of commissioning tests before it begins searching for planets. The TESS team has reported that the spacecraft and cameras are in good health, and the spacecraft has successfully reached its final science orbit. The team continues to conduct tests in order to optimize spacecraft performance with a goal of beginning science at the end of July.

Every new mission goes through a commissioning period of testing and adjustments before beginning science operations. This serves to test how the spacecraft and its instruments are performing and determines whether any changes need to be made before the mission starts observations.

TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory in Lexington, Massachusetts; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

InSight Arrives at Launch Site

InSight will be mounted atop a United Launch Alliance Atlas V-401 rocket and launched from Space Launch Complex 3E at Vandenberg Air Force Base.

Date: May 5 liftoff, the launch window opens at 07:05 EDT / 11:05 UTC and remains open for two hours. Time are provided I did the conversion correctly, the time change is coming right up.

If you have been thinking there has been quite a number of launches this year we’ve had 22 so far.

Image credit: NASA/JPL-Caltech/Lockheed Martin Space

About the image:

NASA — Personnel supporting NASA’s InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018.

InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth.

JPL, a division of Caltech in Pasadena, California, manages the InSight Project for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space, Denver, built the spacecraft. InSight is part of NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.