Category Archives: Research

Europa Radiation Mapping

Looking to the future of exploration of the Jovian moon Europa, radiation mapping is key. The top picture is a fun thought experiment. Both images are from NASA of course. So how far below the surface does the radiation penetrate? Research suggests not all that far.

NASA (Gretchen McCartney, Dwayne Brown / JoAnna Wendel) New comprehensive mapping of the radiation pummeling Jupiter’s icy moon Europa reveals where scientists should look — and how deep they’ll have to go — when searching for signs of habitability and biosignatures.

Since NASA’s Galileo mission yielded strong evidence of a global ocean underneath Europa’s icy shell in the 1990s, scientists have considered that moon one of the most promising places in our solar system to look for ingredients to support life. There’s even evidence that the salty water sloshing around the moon’s interior makes its way to the surface.

By studying this material from the interior, scientists developing future missions hope to learn more about the possible habitability of Europa’s ocean. However, Europa’s surface is bombarded by a constant and intense blast of radiation from Jupiter. This radiation can destroy or alter material transported up to the surface, making it more difficult for scientists to know if it actually represents conditions in Europa’s ocean.

As scientists plan for upcoming exploration of Europa, they have grappled with many unknowns: Where is the radiation most intense? How deep do the energetic particles go? How does radiation affect what’s on the surface and beneath — including potential chemical signs, or biosignatures, that could imply the presence of life.

A new scientific study, published today in Nature Astronomy, represents the most complete modeling and mapping of radiation at Europa and offers key pieces to the puzzle. The lead author is Tom Nordheim, research scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.

“If we want to understand what’s going on at the surface of Europa and how that links to the ocean underneath, we need to understand the radiation,” Nordheim said. “When we examine materials that have come up from the subsurface, what are we looking at? Does this tell us what is in the ocean, or is this what happened to the materials after they have been radiated?”

Using data from Galileo’s flybys of Europa two decades ago and electron measurements from NASA’s Voyager 1 spacecraft, Nordheim and his team looked closely at the electrons blasting the moon’s surface. They found that the radiation doses vary by location. The harshest radiation is concentrated in zones around the equator, and the radiation lessens closer to the poles.

Mapped out, the harsh radiation zones appear as oval-shaped regions, connected at the narrow ends, that cover more than half of the moon.

“This is the first prediction of radiation levels at each point on Europa’s surface and is important information for future Europa missions,” said Chris Paranicas, a co-author from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

Now scientists know where to find regions least altered by radiation, which could be crucial information for the JPL-led Europa Clipper, NASA’s mission to orbit Jupiter and monitor Europa with about 45 close flybys. The spacecraft may launch as early as 2022 and will carry cameras, spectrometers, plasma and radar instruments to investigate the composition of the moon’s surface, its ocean, and material that has been ejected from the surface.

In his new paper, Nordheim didn’t stop with a two-dimensional map. He went deeper, gauging how far below the surface the radiation penetrates, and building 3D models of the most intense radiation on Europa. The results tell us how deep scientists need to dig or drill, during a potential future Europa lander mission, to find any biosignatures that might be preserved.

The answer varies, from 4 to 8 inches (10 to 20 centimeters) in the highest-radiation zones – down to less than 0.4 inches (1 centimeter) deep in regions of Europa at middle- and high-latitudes, toward the moon’s poles.

To reach that conclusion, Nordheim tested the effect of radiation on amino acids, basic building blocks for proteins, to figure out how Europa’s radiation would affect potential biosignatures. Amino acids are among the simplest molecules that qualify as a potential biosignature, the paper notes.

“The radiation that bombards Europa’s surface leaves a fingerprint,” said Kevin Hand, co-author of the new research and project scientist for the potential Europa Lander mission. “If we know what that fingerprint looks like, we can better understand the nature of any organics and possible biosignatures that might be detected with future missions, be they spacecraft that fly by or land on Europa.

Europa Clipper’s mission team is examining possible orbit paths, and proposed routes pass over many regions of Europa that experience lower levels of radiation, Hand said. “That’s good news for looking at potentially fresh ocean material that has not been heavily modified by the fingerprint of radiation.”

JPL, a division of Caltech in Pasadena, California, manages the Europa Clipper mission for NASA’s Science Mission Directorate in Washington.

For more information about NASA’s Europa Clipper mission, visit:

https://www.nasa.gov/europa

Sample Return Technology

How does one go about the extraordinarily difficult task of returning a sample from another world back to Earth? Honey Bee Robotics is testing technology to do just that – the Planet Vac.

Credits: NASA Photo / Lauren Hughes

From NASA/Honey Bee Robotics/Masten Space Systems:

Just a sample will do.

Honeybee Robotics in Pasadena, California, flight tested its pneumatic sampler collection system, PlanetVac, on Masten Space Systems’ Xodiac rocket on May 24, launching from Mojave, California, and landing to collect a sample of more than 320 grams of top soil from the surface of the desert floor.

“The opportunity to test a technology on Earth before it is destined for another planet allows researchers and mission planners to have confidence that once the technology arrives to its space destination it will work,” said Ryan Dibley, NASA Flight Opportunities program campaign manager. Flight Opportunities program funded the test flight.

PlanetVac is a surface soil collection system for a sample return mission. The configuration tested would replace a foot pad of a planetary lander spacecraft. The goal is to bring back a sample of surface soil from a celestial body.

“Bringing something back from another planet, celestial body, is the Holy Grail of planetary science,” said Justin Spring, senior project engineer for Honeybee Robotics. “It allows you to have something from another world, here, so Earth instruments can analyze it. We’re still analyzing what we collected from the moon years ago!”

The pneumatic sampler foot pad starts operation after the lander touches down on a surface. Compressed gas is injected into the foot pad enclosure, lofting the soil into a cyclone separator for collection.

“What it does is kind of like your vacuum,” said Spring. “It creates an area of high pressure in the front and uses an area of low pressure in the back to suck up the sample. The best thing about PlanetVac is how simple it is. Aside from a single actuator to trigger the gas flow, the system is entirely pneumatic, which reduces complexity and risk.”

“There are other ways to collect samples,” he adds. “The Mars Curiosity rover uses a drill. The Mars Phoenix lander had a scoop. But to keep it simple when all you need is surface dirt then using this pneumatic system can bring the sample back.”

“The Flight Opportunities program allowed us to take the PlanetVac idea and actually strap it on to Masten’s rocket putting it in a situation more realistic to what it might encounter in a space mission,” said Spring. “This reduces the risk since we now know it can survive both landing and heating loads as well as the rocket environment and still collect the sample and retain it to come back.”

Through the Flight Opportunities program, the Space Technology Mission Directorate (STMD) selects promising technologies from industry, academia and government for testing on commercial launch vehicles and enables public-private partnerships for the agency. The program is funded by STMD and managed at NASA’s Armstrong Flight Research Center in Edwards, California.

STMD is responsible for developing the crosscutting, pioneering, new technologies and capabilities needed by the agency to achieve its current and future missions.

New Ganymede Data

From the Galileo mission over 20 years ago. The data comes from the first flyby of the moon. I worked with a group that would collect all sorts of data and it went to two places, one into a US federal aide report to get money to collect more data to put into the next years federal aide report (and so on) and the other place was a file cabinet. The data amounted to nothing at all. Now not ALL of the people wasted the data but some did. Terrible. So when I see data that gets multiple looks it makes me smile. Thankfully ESA and NASA are both taking fresh looks at old data.

And this is new Ganymede data so it is REALLY fun.

NASA: Far across the solar system, from where Earth appears merely as a pale blue dot, NASA’s Galileo spacecraft spent eight years orbiting Jupiter. During that time, the hearty spacecraft — slightly larger than a full-grown giraffe — sent back spates of discoveries on the gas giant’s moons, including the observation of a magnetic environment around Ganymede that was distinct from Jupiter’s own magnetic field. The mission ended in 2003, but newly resurrected data from Galileo’s first flyby of Ganymede is yielding new insights about the moon’s environment — which is unlike any other in the solar system.

“We are now coming back over 20 years later to take a new look at some of the data that was never published and finish the story,” said Glyn Collinson, lead author of a recent paper about Ganymede’s magnetosphere at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We found there’s a whole piece no one knew about.”

The new results showed a stormy scene: particles blasted off the moon’s icy surface as a result of incoming plasma rain, and strong flows of plasma pushed between Jupiter and Ganymede due to an explosive magnetic event occurring between the two bodies’ magnetic environments. Scientists think these observations could be key to unlocking the secrets of the moon, such as why Ganymede’s auroras are so bright.

In 1996, shortly after arriving at Jupiter, Galileo made a surprising discovery: Ganymede had its own magnetic field. While most planets in our solar system, including Earth, have magnetic environments — known as magnetospheres — no one expected a moon to have one.

Continue reading

Oumuamua – What We Are Learning

Remember Oumuamua the interstellar visitor that whizzing through the solar system at over 315,000 km per hour? The thing was kind of strange at first because it wasn’t anywhere near a roundish shape rather it was like a giant spike or chip.

I could imagine this thing being chipped off from a larger object or maybe this was all that was left after such an event. Now there is a new theory and I didn’t see this one coming. Gravity stretching? Yeah, weird. The other thing about Oumuamua is it is giving insight into planetary formation.

Here’s the scoop from NASA – he first interstellar object ever seen in our solar system, named ‘Oumuamua, is giving scientists a fresh perspective on the development of planetary systems. A new study by a team including astrophysicists at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, calculated how this visitor from outside our solar system fits into what we know about how planets, asteroids and comets form.

On Oct. 19, 2017, astronomers working with the NASA-funded Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) at the University of Hawaii spotted an object zipping through our solar system at a very high speed. Scientists at the Minor Planet Center, funded by NASA’s Near-Earth Object Observations Program, confirmed it was the first object of interstellar origin that we’ve seen. The team dubbed it ‘Oumuamua (pronounced oh-MOO-ah-MOO-ah), which means “a messenger from afar arriving first” in Hawaiian — and it’s already living up to its name.

“This object was likely ejected from a distant star system,” said Elisa Quintana, an astrophysicist at Goddard. “What’s interesting is that just this one object flying by so quickly can help us constrain some of our planet formation models.”
Continue reading

Student Projects Go To Space

Utterly fantastic! It’s a great time to be a student.

NASA – Four university student projects were successfully launched at 6:51:30 a.m. EDT, March 25, 2018, on a NASA suborbital sounding rocket from the agency’s Wallops Flight Facility in Virginia.

The two-stage Terrier-Improved Malemute sounding rocket carried the projects to an altitude of 107 miles. The projects then descended by parachute, landing in the Atlantic Ocean. The projects were recovered and will be returned to the students for analysis.

The undergraduate student teams’ projects from Utah State University, Logan; the University of Nebraska – Lincoln; the University of Kentucky, Lexington; and the Florida Institute of Technology, Melbourne, were launched through the NASA Undergraduate Student Instrument Project or USIP.

“USIP gave students the opportunity to experience working in a research and development environment and learn about different aspects of taking an engineering project from conceptual design through fabrication and testing. Students gained skills in project management, design analysis and selection, fabrication, and assembly. The Nebraska USIP team also honed its interpersonal and writing skills through design reviews, monthly status reports, and required grant reporting,” said Amy Price, a senior mechanical engineering student and team lead.

She said, “The University of Nebraska-Lincoln USIP team is comprised of multidisciplinary students providing a well-rounded project team. Throughout the two-year duration of the USIP project, 29 undergraduate students have worked on the project. This includes students from various disciplines within the College of Engineering such as biological systems, chemical, computer, electrical, and mechanical engineering majors. In addition, there are math, physics, finance, and economics majors on the team.”


“USIP has been a fantastic experience for the more than 46 University of Kentucky students who have been able to work on the project. The KRUPS Operational Re-entry Experimental Vehicle for Extensive Testing has been a great opportunity for participating in the NASA systems engineering process and for obtaining hands-on experience designing, building, integrating and testing the capsule’s ejection mechanism and communication systems. A highlight so far was presenting the project to the NASA Deputy Administrator at the Spring 2018 Space Grant Conference,” said Gabriel Myers, a senior mechanical engineering and physics major.

Myers added, “Through cooperation with engineers at NASA Wallops and elsewhere, the group has been able to gain a degree of engineering intuition aiding the students in drawing connections between their classes and applying that knowledge.”

Wallops managers serve as USIP technical advisors for these four cooperative agreements on behalf agency’s Office of Education and the Science Mission Directorate. In 2016 NASA selected an additional 43 university experiments to fly on orbital and suborbital vehicles including rockets, aircraft, balloons and CubeSats through a cooperative agreement competition for members of NASA’s 52 Space Grant Consortia and other eligible higher education institutions.

Image: NASA

The Tarantula Nebula Nursery

Just look at what you can do with a plane and a telescope these days. The SOFIA Observatory is just that combined with a great team. This image was taken with the visible-light guide camera during observations from Christchurch, New Zealand.

Credits: NASA/SOFIA/Nicholas A. Veronico

NASA – To have a full picture of the lives of massive stars, researchers need to study them in all stages – from when they’re a mass of unformed gas and dust, to their often dynamic end-of-life explosions.

NASA’s flying telescope, the Stratospheric Observatory for Infrared Astronomy, or SOFIA, is particularly well-suited for studying the pre-natal stage of stellar development in star-forming regions, such as the Tarantula Nebula, a giant mass of gas and dust located within the Large Magellanic Cloud, or LMC.

Researchers from the Minnesota Institute for Astrophysics, led by Michael Gordon, went aboard SOFIA to identify and characterize the brightness, ages and dust content of three young star-forming regions within the LMC.

“The Large Magellanic Cloud has always been an interesting and excellent laboratory for massive star formation,” said Gordon. “The chemical properties of star-forming regions in the LMC are significantly different than in the Milky Way, which means the stars forming there potentially mirror the conditions of star formation in dwarf galaxies at earlier times in the universe.”

In our galactic neighborhood, which includes the LMC, massive stars – generally classified as stars more than eight times the mass of Earth’s Sun – are believed to form exclusively in very dense molecular clouds. The dark dust and gas absorb background light, which prevents traditional optical telescopes from imaging these areas.

“The mid-infrared capabilities of SOFIA are ideal for piercing through infrared dark clouds to capture images of potential massive star-forming regions,” Gordon said.

The observations were completed with the Faint Object infrared Camera for the SOFIA Telescope, known as FORCAST. This infrared camera also performs spectroscopy, which identifies the elements present.

Astronomers study stars evolving in both the optical and the infrared to learn more about the photosphere, and the population of stars in the photosphere. The mid- and far-infrared data from SOFIA reaffirm dust temperature and mass accretion rates that are consistent with prior research of the LMC.

“We want to combine as many observations as we can from the optical, as seen through images from the Hubble Space Telescope, all the way out to the far infrared, imaged using the Spitzer Space Telescope and the Herschel Space Observatory, to get as broad a picture as possible,” Gordon continued. “No previous researchers have used FORCAST’s wavelength range to effectively study massive star formations. We needed SOFIA to fill in the 20- to 40-micron gap to give us the whole picture of what’s taking place.”

In summer 2017, further research of the Tarantula Nebula was accomplished aboard SOFIA during the observatory’s six-week science campaign operating from Christchurch, New Zealand, to study the sky in the Southern Hemisphere. Gordon and his team are hopeful that when analyzed, data obtained from the Christchurch flights will reveal previously undiscovered young massive stars forming in the region, which have never been observed outside of the Milky Way.

SOFIA is a Boeing 747SP jetliner modified to carry a 100-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is based at NASA’s Armstrong Flight Research Center’s Hangar 703, in Palmdale, California.

MMS and Magnetic Reconnection

Here’s a glimpse into the realm of the Magnetospheric Multiscale Mission.

The topics of magnetic reconnection and the magnetosphere get a fair amount of attention on the internet. The interest is with good reason, the more we become dependent on electronic devices and the benefits derived from them like say, the internet and access to it the more we need to learn what is really going on up there. Funny thing is, much of the interest is from the doom-mongers and conspiracy theorists playing on the risk.

So with thanks to NASA (and Credits: NASA’s Goddard Space Flight Center/Tom Bridgman) here is a little bit on what we are learning:

First a short (12 sec) animation of just one electron in the magnetic reconnection region.

NASA — The space high above Earth may seem empty, but it’s a carnival packed with magnetic field lines and high-energy particles. This region is known as the magnetosphere and, every day, charged particles put on a show as they dart and dive through it. Like tiny tightrope walkers, the high-energy electrons follow the magnetic field lines. Sometimes, such as during an event called magnetic reconnection where the lines explosively collide, the particles are shot off their trajectories, as if they were fired from a cannon.

Since these acts can’t be seen by the naked eye, NASA uses specially designed instruments to capture the show. The Magnetospheric Multiscale Mission, or MMS, is one such looking glass through which scientists can observe the invisible magnetic forces and pirouetting particles that can impact our technology on Earth. New research uses MMS data to improve understanding of how electrons move through this complex region — information that will help untangle how such particle acrobatics affect Earth.

Scientists with MMS have been watching the complex shows electrons put on around Earth and have noticed that electrons at the edge of the magnetosphere often move in rocking motions as they are accelerated. Finding these regions where electrons are accelerated is key to understanding one of the mysteries of the magnetosphere: How does the magnetic energy seething through the area get converted to kinetic energy — that is, the energy of particle motion. Such information is important to protect technology on Earth, since particles that have been accelerated to high energies can at their worst cause power grid outages and GPS communications dropouts.

New research, published in the Journal of Geophysical Research, found a novel way to help locate regions where electrons are accelerated. Until now, scientists looked at low-energy electrons to find these accelerations zones, but a group of scientists lead by Matthew Argall of the University of New Hampshire in Durham has shown it’s possible, and in fact easier, to identify these regions by watching high-energy electrons.

This research is only possible with the unique design of MMS, which uses four spacecraft flying in a tight tetrahedral formation to give high temporal and spatial resolution measurements of the magnetic reconnection region.

“We’re able to probe very small scales and this helps us to really pinpoint how energy is being converted through magnetic reconnection,” Argall said.

The results will make it easier for scientists to identify and study these regions, helping them explore the microphysics of magnetic reconnection and better understand electrons’ effects on Earth.

The Surface of π1 Gruis

The European Southern Observatory (ESO) just released this image of the surface of a red giant star. Take a look at our future. Excellent work! Image: ESO

ESO — Located 530 light-years from Earth in the constellation of Grus (The Crane), π1 Gruis is a cool red giant.

It has about the same mass as our Sun, but is 700 times larger and several thousand times as bright [1]. Our Sun will swell to become a similar red giant star in about five billion years.

An international team of astronomers led by Claudia Paladini (ESO) used the PIONIER instrument on ESO’s Very Large Telescope to observe π1 Gruis in greater detail than ever before. They found that the surface of this red giant has just a few convective cells, or granules, that are each about 120 million kilometres across — about a quarter of the star’s diameter [2]. Just one of these granules would extend from the Sun to beyond Venus. The surfaces — known as photospheres — of many giant stars are obscured by dust, which hinders observations. However, in the case of π1 Gruis, although dust is present far from the star, it does not have a significant effect on the new infrared observations [3].

Continue reading