SpaceX Launch Delay

spacexdiscovrlaunch

SpaceX was supposed to launch the JCSat-14 today from Cape Canaveral Florida however due to weather concerns the launch as been moved to Friday 06 May at 05:20 UTC. That particular time is also 01:20 ET which means this will be a night time launch. Lucky us!

The JCSat-14 is a communications satellite to serve the Asia Pacific region.  The satellite will replace an older satellite at 154 degrees East longitude and provide improved capabilities.

The picture above is the SpaceX launch of DSCOVR, it’s one of my favorites.

Credit: SpaceX

Mark Your Calendars

On 09 May 2016 there will be a transit of Mercury.  Will you be able to see it?  Check here.  If it happens you are not able to view it, don’t worry there will be plenty of on-line sources, some of which I will post before hand.

Even if you do live in an area where the the transit is visible DO NOT LOOK AT THE SUN DIRECTLY WITHOUT THE AID OF A SAFE SOLAR FILTER. 

Science@NASA put up a nice video with all the details:

Video

Elevation Map from Pluto

reliefmapPLUTO2

The New Horizon’s team released this elevation map of Sputnik Planum, the heart shaped feature on Pluto.

From New Horizons
This shaded relief view of the region surrounding the left side of Pluto’s heart-shaped feature – informally named Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain. Angular blocks of water ice along the western edge of Sputnik Planum can be seen “floating” in the bright deposits of softer, denser solid nitrogen.

Topographic maps of Pluto are produced from digital analysis of New Horizons stereo images acquired during the July 14, 2015 flyby. Such maps are derived from digital stereo-image mapping tools that measure the parallax – or the difference in the apparent relative positions – of individual features on the surface obtained at different times. Parallax displacements of high and low features are then used to directly estimate feature heights.

These topographic maps are works in progress and artifacts are still present in the current version. The map is artificially illuminated from the south, rather than the generally northern solar lighting of landscape during the time of the flyby. One of the many advantages of digital terrain maps is that they can be illuminated from any direction to best bring out different features. North is up and the total relief in the scene is approximately 4 miles (6 kilometers) from the lowest to the highest features.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The Crescent of Titan

titancrescent

Here is an image of the Saturn moon Titan.  The moon – sun – Cassini geometry was such we see Titan in a crescent phase.  Cassini’s camera took the image using the clear and blue band filters.  This is a raw image meaning it is just as it was transmitted with no processing on the ground.

The image was taken on 05 April 2016 at 11:44 UTC and received on  Earth a bit less than six hours later.

Image Credit: NASA/JPL-Caltech/Space Science Institute

10 Billion Year-old Neutrino Found

Way to go Fermi!

Nearly 10 billion years ago, the black hole at the center of a galaxy known as PKS B1424-418 produced a powerful outburst. Light from this blast began arriving at Earth in 2012. Now astronomers using data from NASA’s Fermi Gamma-ray Space Telescope and other space- and ground-based observatories have shown that a record-breaking neutrino seen around the same time likely was born in the same event. — NASA

Video

Using Galaxies as Dark Energy Tools

galaxycluster

Using galaxy clusters to study dark energy – very innovative!

From NASA:

These four galaxy clusters were part of a large survey of over 300 clusters used to investigate dark energy, the mysterious energy that is currently driving the accelerating expansion of the Universe. In these composite images, X-rays from NASA’s Chandra X-ray Observatory (purple) have been combined with optical light from the Hubble Space Telescope and Sloan Digital Sky Survey (red, green, and blue).

Researchers used a novel technique that takes advantage of the observation that the outer reaches of galaxy clusters, the largest structures in the universe held together by gravity, show similarity in their X-ray emission profiles and sizes. That is, more massive clusters are simply scaled up versions of less massive ones, similar to Russian dolls that nest inside one another.

The amount of matter in the Universe, which is dominated by the unseen substance called dark matter, and the properties of dark energy (what astronomers call cosmological parameters) affect the rate of expansion of the Universe and, therefore, how the distances to objects changes with time. If the cosmological parameters used are incorrect and a cluster is inferred to be traveling away faster than the correct value, then a cluster will appear to be larger and fainter due to this “Russian doll” property. If the cluster is inferred to be traveling away more slowly than the correct value, the cluster will be smaller and brighter than a cluster according to theory.

These latest results confirm earlier studies that the amount of dark energy has not changed over billions of years. They also support the idea that dark energy is best explained by the “cosmological constant,” which Einstein first proposed and is equivalent to the energy of empty space.

The galaxy clusters in this large sample ranged in distance from about 760 million to 8.7 billion light years from Earth, providing astronomers with information about the era where dark energy caused the once-decelerating expansion of the Universe to accelerate.

The X-ray emission in the outer parts of galaxy clusters is faint because the gas is diffuse there. To deal with this issue in this study, the X-ray signal from different clusters was added together. Regions near the centers of the clusters are excluded from the analysis because of large differences between the properties of different clusters caused by supermassive black hole outbursts, the cooling of gas and the formation of stars.

A paper describing these results by Andrea Morandi and Ming Sun (University of Alabama at Huntsville) appeared in the April 11th, 2016 issue of the Monthly Notices of the Royal Astronomical Society journal and is available online. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

Image credits: X-ray: NASA/CXC/Univ. of Alabama/A. Morandi et al; Optical: SDSS, NASA/STScI

Curious Wheels Update

curiositywheels3

A few days ago I did a short post on the status of Curiosity’s wheels and yesterday the mission team released their assessment:

The team operating NASA’s Curiosity Mars rover uses the Mars Hand Lens Imager (MAHLI) camera on the rover’s arm to check the condition of the wheels at routine intervals. This image of Curiosity’s left-middle and left-rear wheels is part of an inspection set taken on April 18, 2016, during the 1,315th Martian day, or sol, of the rover’s work on Mars.

Holes and tears in the wheels worsened significantly during 2013 as Curiosity was crossing terrain studded with sharp rocks on its route from near its 2012 landing site to the base of Mount Sharp. Team members are keeping a close eye for when any of the zig-zag shaped treads, call grousers, begin to break. Longevity testing with identical wheels on Earth indicates that when three grousers on a given wheel have broken, that wheel has reached about 60 percent of its useful mileage. Since Curiosity’s current odometry of 7.9 miles (12.7 kilometers) is about 60 percent of the amount needed for reaching all the geological layers planned in advance as the mission’s science destinations, and no grousers have yet broken, the accumulating damage to wheels is not expected to prevent the rover from reaching those destinations on Mount Sharp.

As with other images from Curiosity’s cameras, all of the wheel-inspection exposures are available in the raw images collections at http://mars.nasa.gov/msl/multimedia/raw/. The Sol 1315 MAHLI raw images are at http://mars.nasa.gov/msl/multimedia/raw/?s=1315&camera=MAHLI. The rover’s location during this wheel check was on “Naukluft Plateau” on lower Mount Sharp.

Curiosity’s six aluminum wheels are about 20 inches (50 centimeters) in diameter and 16 inches (40 centimeters) wide. Each of the six wheels has its own drive motor, and the four corner wheels also have steering motors.

Image Credit: NASA/JPL-Caltech/MSSS

Hubble Finds A Moon

Peering to the outskirts of our solar system, NASA’s Hubble Space Telescope has spotted a small, dark moon orbiting Makemake, the second brightest icy dwarf planet — after Pluto — in the Kuiper Belt.

The moon — provisionally designated S/2015 (136472) 1 and nicknamed MK 2 — is more than 1,300 times fainter than Makemake. MK 2 was seen approximately 13,000 miles from the dwarf planet, and its diameter is estimated to be 100 miles across. Makemake is 870 miles wide. The dwarf planet, discovered in 2005, is named for a creation deity of the Rapa Nui people of Easter Island. NASA

Discovered by: Michael E. Brown, Chad Trujillo, and David Rabinowitz on 31 March 2005, MakeMake was at opposition in March and the magnitude was around 16.1.  Probably about as bright as it gets. To get an idea of magnitudes have a look at this page from the International Comet Quarterly.