ESA May Take AIM

Ever wonder how ESA is going to top the Rosetta mission and the landing of Philae on the surface of comet 67P/Churyumov–Gerasimenko?

If approved the Asteroid Impact Mission would put a microlander called Mascot-2 would be deployed from the main AIM spacecraft to touch down on the approximately 170-m diameter ‘Didymoon’, in orbit around the larger 700-m diameter Didymos asteroid.


Juno Mission to Jupiter

A detailed look at the Juno mission to Jupiter. We are just about a month away from arrival! This lecture was recorded at the Von Karman Auditorium, NASA-JPL, Pasadena, California on Nov. 5, 2015.


Another Success for SpaceX

For the third time SpaceX lands a first stage rocket on a drone ship. This time SpaceX launched an Asian communications satellite (Thaicom-8) into orbit.

Apparently the drone ship has a name: “Of Course I Still Love You”.


New Hubble Image of Mars


A spectacular image of Mars from the Hubble taken on 12 May 2016 when Mars was reaching opposition.  Click the image for an annotated version.

The original caption:
This hemisphere of Mars contains landing sites for several NASA Mars surface robotic missions, including Viking 1 (1976), Mars Pathfinder (1997), and the still-operating Opportunity Mars rover. The landing sites of the Spirit and Curiosity Mars rovers are on the other side of the planet.

This observation was made just a few days before Mars opposition on May 22, when the sun and Mars will be on exact opposite sides of Earth, and when Mars will be at a distance of 47.4 million miles from Earth. On May 30, Mars will be the closest it has been to Earth in 11 years, at a distance of 46.8 million miles. Mars is especially photogenic during opposition because it can be seen fully illuminated by the sun as viewed from Earth.

The biennial close approaches between Mars and Earth are not all the same. Mars’ orbit around the sun is markedly elliptical; the close approaches to Earth can range from 35 million to 63 million miles.

They occur because about every two years Earth’s orbit catches up to Mars’ orbit, aligning the sun, Earth, and Mars in a straight line, so that Mars and the sun are on “opposing” sides of Earth. This phenomenon is a result of the difference in orbital periods between Earth’s orbit and Mars’ orbit. While Earth takes the familiar 365 days to travel once around the sun, Mars takes 687 Earth days to make its trip around our star. As a result, Earth makes almost two full orbits in the time it takes Mars to make just one, resulting in the occurrence of Martian oppositions about every 26 months.

Credits: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute)



The Jovian moon Europa might have an Earthlike chemical balance in the ocean thought to be under the surface of ice.  This enhanced image was produced by the Galileo spacecraft.

We will be learning much more about Jupiter and probably the environment it creates for its moons beginning in just over a month with the arrival of the Juno spacecraft.

Credits: NASA/JPL-Caltech/ SETI Institute

From NASA:

A new NASA study modeling conditions in the ocean of Jupiter’s moon Europa suggests that the necessary balance of chemical energy for life could exist there, even if the moon lacks volcanic hydrothermal activity.

Europa is strongly believed to hide a deep ocean of salty liquid water beneath its icy shell. Whether the Jovian moon has the raw materials and chemical energy in the right proportions to support biology is a topic of intense scientific interest. The answer may hinge on whether Europa has environments where chemicals are matched in the right proportions to power biological processes. Life on Earth exploits such niches.

In a new study, scientists at NASA’s Jet Propulsion Laboratory, Pasadena, California, compared Europa’s potential for producing hydrogen and oxygen with that of Earth, through processes that do not directly involve volcanism. The balance of these two elements is a key indicator of the energy available for life. The study found that the amounts would be comparable in scale; on both worlds, oxygen production is about 10 times higher than hydrogen production.

Continue reading

Happy Towel Day!

toweldaypixHappy what-day?  Towel day, it is a tribute to Douglas Adams. The image is Towel Day 2005 in the lovely Innsbruck, Austria, where Adams got the inspiration to write the Guide.

There is much to do, at least there are options – check out

I will be on a twenty-meter lift today and you can bet I’ll have a towel with me.

From the Hitchhikers Guide to the Galaxy:

A towel, it says, is about the most massively useful thing an interstellar hitchhiker can have. Partly it has great practical value. You can wrap it around you for warmth as you bound across the cold moons of Jaglan Beta; you can lie on it on the brilliant marble-sanded beaches of Santraginus V, inhaling the heady sea vapours; you can sleep under it beneath the stars which shine so redly on the desert world of Kakrafoon; use it to sail a miniraft down the slow heavy River Moth; wet it for use in hand-to-hand-combat; wrap it round your head to ward off noxious fumes or avoid the gaze of the Ravenous Bugblatter Beast of Traal (such a mind-bogglingly stupid animal, it assumes that if you can't see it, it can't see you — daft as a brush, but very very ravenous); you can wave your towel in emergencies as a distress signal, and of course dry yourself off with it if it still seems to be clean enough.
More importantly, a towel has immense psychological value. For some reason, if a strag (strag: non-hitch hiker) discovers that a hitchhiker has his towel with him, he will automatically assume that he is also in possession of a toothbrush, face flannel, soap, tin of biscuits, flask, compass, map, ball of string, gnat spray, wet weather gear, space suit etc., etc. Furthermore, the strag will then happily lend the hitch hiker any of these or a dozen other items that the hitch hiker might accidentally have "lost." What the strag will think is that any man who can hitch the length and breadth of the galaxy, rough it, slum it, struggle against terrible odds, win through, and still knows where his towel is, is clearly a man to be reckoned with.
Hence a phrase that has passed into hitchhiking slang, as in "Hey, you sass that hoopy Ford Prefect? There's a frood who really knows where his towel is." (Sass: know, be aware of, meet, have sex with; hoopy: really together guy; frood: really amazingly together guy.)

Super Pressure Balloon

Balloon launch! This one from Wanaka Airport, New Zealand, at 11:35 a.m. Tuesday, May 17, (7:35 p.m. EDT Monday, May 16) on a potentially record-breaking, around-the-world test flight.

As the balloon travels around the Earth, it may be visible from the ground, particularly at sunrise and sunset, to those who live in the southern hemisphere’s mid-latitudes, such as Argentina and South Africa. Anyone may track the progress of the flight, which includes a map showing the balloon’s real-time location, at:

ESA’s Sentinel-1A Spots Oil Slick


Image contains modified Copernicus Sentinel data [2016], processed by ESA & Sentinel-1 Mission Performance Centre

From 20 May:

The Sentinel-1A radar satellite detected a slick in the eastern Mediterranean Sea – in the same area that EgyptAir flight MS804 disappeared early morning of 19 May 2016 on its way from Paris to Cairo. Sentinel-1A acquired this image later in the day at 16:00 GMT (18:00 CEST) in ‘extra-wide swath mode’ of 400 km with horizontal polarisation. ESA provided it to the relevant authorities to support the search operations. The 2 km-long slick is located at 33°32′ N / 29°13′ E – about 40 km southeast of the last known location of the aircraft. Although there is no guarantee that the slick is from the missing airplane, this information could be helpful for the search.

The search for the black boxes is underway.