Category Archives: Comets

Comet Borisov

An interplanetary visitor.

Credits: Canada-France-Hawaii Telescope

From NASA: A newly discovered comet has excited the astronomical community this week because it appears to have originated from outside the solar system. The object — designated C/2019 Q4 (Borisov) — was discovered on Aug. 30, 2019, by Gennady Borisov at the MARGO observatory in Nauchnij, Crimea. The official confirmation that comet C/2019 Q4 is an interstellar comet has not yet been made, but if it is interstellar, it would be only the second such object detected. The first, ‘Oumuamua, was observed and confirmed in October 2017.

The new comet, C/2019 Q4, is still inbound toward the Sun, but it will remain farther than the orbit of Mars and will approach no closer to Earth than about 190 million miles (300 million kilometers).

After the initial detections of the comet, Scout system, which is located at NASA’s Jet Propulsion Laboratory in Pasadena, California, automatically flagged the object as possibly being interstellar. Davide Farnocchia of NASA’s Center for Near-Earth Object Studies at JPL worked with astronomers and the European Space Agency’s Near-Earth Object Coordination Center in Frascati, Italy, to obtain additional observations. He then worked with the NASA-sponsored Minor Planet Center in Cambridge, Massachusetts, to estimate the comet’s precise trajectory and determine whether it originated within our solar system or came from elsewhere in the galaxy.

The comet is currently 260 million miles (420 million kilometers) from the Sun and will reach its closest point, or perihelion, on Dec. 8, 2019, at a distance of about 190 million miles (300 million kilometers).

“The comet’s current velocity is high, about 93,000 mph [150,000 kph], which is well above the typical velocities of objects orbiting the Sun at that distance,” said Farnocchia. “The high velocity indicates not only that the object likely originated from outside our solar system, but also that it will leave and head back to interstellar space.”

Currently on an inbound trajectory, comet C/2019 Q4 is heading toward the inner solar system and will enter it on Oct. 26 from above at roughly a 40-degree angle relative to the ecliptic plane. That’s the plane in which the Earth and planets orbit the Sun.

C/2019 Q4 was established as being cometary due to its fuzzy appearance, which indicates that the object has a central icy body that is producing a surrounding cloud of dust and particles as it approaches the Sun and heats up. Its location in the sky (as seen from Earth) places it near the Sun — an area of sky not usually scanned by the large ground-based asteroid surveys or NASA’s asteroid-hunting NEOWISE spacecraft.

C/2019 Q4 can be seen with professional telescopes for months to come. “The object will peak in brightness in mid-December and continue to be observable with moderate-size telescopes until April 2020,” said Farnocchia. “After that, it will only be observable with larger professional telescopes through October 2020.”  

Observations completed by Karen Meech and her team at the University of Hawaii indicate the comet nucleus is somewhere between 1.2 and 10 miles (2 and 16 kilometers) in diameter. Astronomers will continue collect observations to further characterize the comet’s physical properties (size, rotation, etc.) and also continue to better identify its trajectory.

The Minor Planet Center is hosted by the Harvard-Smithsonian Center for Astrophysics and is a sub-node of NASA’s Planetary Data System Small Bodies Node at the University of Maryland. JPL hosts the Center for Near-Earth Object Studies. All are projects of NASA’s Near-Earth Object Observations Program and elements of the agency’s Planetary Defense Coordination Office within NASA’s Science Mission Directorate.

NEOWISE Looks at Comet Iwamoto

Comet C/2018 Y1 Iwamoto as imaged in multiple exposures of infrared light by the NEOWISE space telescope. The infrared images were taken on Feb. 25, 2019, when the comet was about 56 million miles, or 90 million kilometers, from Earth. C/2018 Y1 Iwamoto is a long-period comet originally from the Oort Cloud and coming in near the Sun for the first time in over 1,000 years.

Appearing as a string of red dots, this comet can be seen in a series of exposures captured by the spacecraft. Infrared light detected by the 3.4-micron channel is mapped to blue and green, while light from the 4.6-micron channel is mapped to red. In this image, stars show up as blue because they are hotter, whereas the cooler dust around the comet – with a temperature near the freezing point of water – glows red.

JPL manages NEOWISE for NASA’s Science Mission Directorate at the agency’s headquarters in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

For more information about NEOWISE, visit http://www.nasa.gov/neowise

More information about asteroids and near-Earth objects is at http://www.jpl.nasa.gov/asteroidwatch.

There is also an animation that was released with the image — have a look here.

Image (and animation) Credit:NASA/JPL-Caltech

Comet 46P/Wirtanen

Comet 46P/Wirtanen is in our night sky and visible without a telescope. I cannot say it is a naked-eye object, but I will qualify that by telling you I have not been out in the most favorable time. Most of my viewing has been at 03:00 to 04:00 and if I could get outside a couple hours earlier I might indeed glimpse it. So I am looking to the west and not so much to the south. I do have pretty good skies too so if you have any light pollution at all you will need assistance in seeing Wirtanen (in my experience that is).

If you have even a small pair of binoculars you are all set. I chose the image above because it is a great facsimile of what I see (image from: Astronomy Sketch of the Day). If you have even a small telescope you may be able to see a tail.

How do you find it? The best finders chart I’ve found is here and the chart comes from the Comet Wirtanen Observing Campaign website.

Hopefully I will be able to get one of my scopes on it this weekend. From the weather forecast here that is in doubt, so it’s either brave the -20 C temps or hope the clouds and rain (!) stays away.

Comet 21P Flies By

Edit: Flys? Flies is of course correct. Funny because I actually looked this up and STILL did it wrong – LOL.

What a very nice image of Comet 21 P//Giacobini-Zinner by Greg Ruppel (this image via ESA). Very nice indeed, it’s not as easy to do as one might think. Heh, I came to that conclusion about 2 seconds after I tried it. Fun though.

I wanted to mention we could have a naked-eye comet on the way. The comet is 46P/Wirtanen and could be down around a magnitude 3 in December and with decent skies it should be visible. Note that comets are not necessarily like stars in terms of brightness as comets are more diffuse. More on 46P/Wirtanen later.

As for comet 21P ESA included a great companion story: Something small and green recently flittered across our skies. On 10 September, comet 21P/Giacobini-Zinner made its closest approach to the Sun in 72 years — 151 million km from our star and just 58.6 million km away from Earth (about a third of the distance from here to the Sun).Discovered in 1900, this small comet reappears every 6.6 years. At just two km in diameter, 21P’s cometary tail contains a stream of ‘cometary crumbs’, and as Earth moves through this stream of debris it creates the Draconid meteor shower which peaks every year around 8 October.

Comets are leftovers of the formation of the Solar System, and while they are typically less dense than asteroids they pass Earth at relatively higher speeds, meaning the impact energy of a comet’s nucleus is slightly larger than that of a similar-sized asteroid.

Although no comet is conclusively known to have impacted Earth, there are many proponents of the theory that a fragment of Comet Encke — a periodic comet that orbits the Sun every 3.3 years — resulted in one of the most well-known impact events in our planet’s history.

In 1930, the British astronomer F.J.W. Whipple suggested that the Tunguska event of 1908 — in which an explosion over Eastern Siberia Taiga flattened 2000 square km of forest — was in fact the result of a cometary impact.

No impact crater was ever found, and glowing skies were reported across Europe for several evenings after the event, both supporting the notion that a comet, composed of dust and volatiles — such as water ice and frozen gases — could have been completely vaporised as it smashed into Earth’s atmosphere leaving no obvious trace.

In order to better understand the risk that asteroids and comets pose to our planet, we need to better understand their orbit and composition. Missions such as Rosetta — the first spacecraft to orbit a comet’s nucleus — play a vital role in deepening our understanding of the objects in our Solar System that could pose some risk. ESA’s planned Hera mission to a binary asteroid to test asteroid deflection will be an important step in doing something about them.

#PlanetaryDefence

This stunning image was taken on 9 September 2018 by Greg Ruppel, at his robotic observatory in Animas, New Mexico. For more of Greg’s images of Comet 21P/Giacobini-Zinner, and more, visit his website.

The Origin of the Perseids

Ever wonder where the Perseids come from? Wonder no more because this is Comet Swift-Tuttle and it is the origin of the Perseids showers.

I have been stymied in my viewing thanks to persistent clouds. In the few breaks I have managed to see a few meteors. Yesterday morning mostly, trying to watch the meteors and the launch of the Parker Space Probe (from the outside and through a window) at the same time.

Here’s ESA’s caption for the image above (E.E. Barnard/Internet Archive ):Comet Swift–Tuttle, formally 109P/Swift–Tuttle, is an enormous, icy comet on a 133 year orbit around the Sun, and the reason for the spectacular annual Perseids meteor showers on Earth.

This image shows the comet photographed on 4 April 1892 (top) and 6 April 1892 (bottom) by Professor EE Barnard, taken from Plate III in A Popular History of Astronomy in the nineteenth century by Agnes M Clerke (third edition), courtesy of Internet Archive.

Once a year, Earth passes through a section of Swift–Tuttle’s cometary tail — a cloud of particles ejected from the comet, most of which have been in this formation for a thousand years. As these tiny particles enter Earth’s atmosphere at extremely fast speeds, they burn up, resulting in the wonderful show that is a meteor shower.

Every year from the middle of July to late August, observers are treated to the spectacle of glowing cosmic debris, streaming across the night’s skies. This year the shower will peak from the evening of Sunday 12 August to the early hours of Monday 13 August. The Moon will be a new crescent moon, fortunately setting before the show really gets underway and so leaving the skies dark for what is set to be the best shower of 2018.

Discovered in 1862, the ‘near-Earth comet’ Swift–Tuttle has a nucleus 26 km in diameter — that’s two-and-a-half times the size of the asteroid that wiped out the dinosaurs, and it is travelling four times as fast.

As the largest Solar System object (bar the Moon) to repeatedly pass close to Earth, comet Swift-Tuttle’s movements have been meticulously studied by scientists around the globe. It’s most recent ‘perihelion’ — the point in its orbit in which it comes closest to the Sun — was in 1992, and the next won’t be until 12 July 2126.

Fortunately all of comet Swift–Tuttle’s orbits for the next 2000 years have been intricately calculated, when Earth is 100% safe – passing for example 22.9 million km from Earth in 2126 and 22 million km in 2261.

A close encounter is expected around 15 September 4479, when Swift-Tuttle is expected to pass within 1.6 million km of Earth — more than 90 times closer than the Sun, or, only about four times the distance of the Moon.

So, for the foreseeable future we will continue to enjoy the beautiful show put on every year by the remnants of this Sun-grazer’s historic journeys to the centre of our Solar System. These stunning events also serve as a reminder that our planet has been visited before by huge cosmic space-rocks, and has the potential to be once again.

Comet 45P Is Kind of Odd

This great image shows Comet 45P/Honda-Mrkos-Pajdušáková as seen from Africa. The image was captured by Gerald Rhemann using a telescope on December 22 from Farm Tivoli in Namibia, Africa. Very nice and very nice dark skies!  Click the image for a larger version.

Astronomers in Hawaii used the iSHELL high-resolution spectrograph to see what they could find out about 45P and what they found was not what they might have expected.

NASA — When comet 45P zipped past Earth early in 2017, researchers observing from NASA’s Infrared Telescope Facility, or IRTF, in Hawaii gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial details about ices in Jupiter-family comets and reveal that quirky 45P doesn’t quite match any comet studied so far.

Like a doctor recording vital signs, the team measured the levels of nine gases released from the icy nucleus into the comet’s thin atmosphere, or coma. Several of these gases supply building blocks for amino acids, sugars and other biologically relevant molecules. Of particular interest were carbon monoxide and methane, which are so hard to detect in Jupiter-family comets that they’ve only been studied a few times before.

The gases all originate from the hodgepodge of ices, rock and dust that make up the nucleus. These native ices are thought to hold clues to the comet’s history and how it has been aging.

“Comets retain a record of conditions from the early solar system, but astronomers think some comets might preserve that history more completely than others,” said Michael DiSanti, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new study in the Astronomical Journal.

The comet—officially named 45P/Honda-Mrkos-Pajdušáková—belongs to the Jupiter family of comets, frequent orbiters that loop around the Sun about every five to seven years. Much less is known about native ices in this group than in the long-haul comets from the Oort Cloud.
Continue reading

Hubble Spots Comet C/2017 K2

An inbound comet and a record breaker, comet C/2017 K2 PANSTARRS (K2) is still a LONG ways out, perihelion in 2022.

More about C/2017 K2 PANSTARRS (K2).

Thanks to NASA, ESA, and D. Jewitt (UCLA):

A solitary frozen traveler has been journeying for millions of years toward the heart of our planetary system. The wayward vagabond, a city-sized snowball of ice and dust called a comet, was gravitationally kicked out of the Oort Cloud, its frigid home at the outskirts of the solar system. This region is a vast comet storehouse, composed of icy leftover building blocks from the construction of the planets 4.6 billion years ago.

The comet is so small, faint, and far away that it eluded detection. Finally, in May 2017, astronomers using the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) in Hawaii spotted the solitary intruder at a whopping 1.5 billion miles away – between the orbits of Saturn and Uranus. The Hubble Space Telescope was enlisted to take close-up views of the comet, called C/2017 K2 PANSTARRS (K2).

The comet is record-breaking because it is already becoming active under the feeble glow of the distant Sun. Astronomers have never seen an active inbound comet this far out, where sunlight is merely 1/225th its brightness as seen from Earth. Temperatures, correspondingly, are at a minus 440 degrees Fahrenheit. Even at such bone-chilling temperatures, a mix of ancient ices on the surface – oxygen, nitrogen, carbon dioxide, and carbon monoxide – is beginning to sublimate and shed as dust. This material balloons into a vast 80,000-mile-wide halo of dust, called a coma, enveloping the solid nucleus.

Astronomers will continue to study K2 as it travels into the inner solar system, making its closest approach to the Sun in 2022.

Doomed Comets

Comets coming close to (but not actually impacting) the Earth are very cool. Comets getting too close to the sun are doomed and we get to see them thanks to our space based observatories.