Category Archives: ESA

CHEOPS

CHEOPS or Characterising Exoplanet Satellite is steadily moving towards a launch date later this year. Currently the satellite is at Airbus Defence and Space Spain, Madrid and will eventually be shipped to Kourou, French Guiana for launch.

Antarctic Aurora

ESA — This photograph, taken a short hike from the Geographic South Pole in Antarctica, shows some of the antennas comprising the Super Dual Auroral Radar Network (SuperDARN) array. They are visible here as the chain of antennas and wiring stretching away into the distance. The red lights along the horizon in the background are lights marking the entrances to the Amundsen-Scott research station, which lies a good kilometre distant.SuperDARN is a network of radar antennas that monitors and explores the geomagnetic effects occurring in the Earth’s upper atmosphere. While some of these antennas are located at the South Pole, the network stretches worldwide and antennas are found in both the northern and southern hemispheres. One such geomagnetic effect is neatly captured here as wispy curtains and streaks of green filling the dark night sky above the antennas themselves: an aurora.Auroras, informally known as polar lights, form as charged particles from the Sun flow into our region of space, hit the outer boundary of Earth’s magnetic field, and move further inwards to collide with the atoms and molecules in our planet’s atmosphere. The aurora seen here is known as aurora australis, or the southern lights.Such phenomena form a key component of ‘space weather’, dynamic changes in the Earth’s cosmic environment that are driven by the activity of the Sun. As these can affect the function of both space-borne and ground-based systems and services, it’s crucial to monitor space weather in order to predict and mitigate its adverse effects. ESA does so via the Space Situational Awareness Space Weather Segment, and various science missions such as Cluster and Swarm, along with dedicated Sun-watching satellites to better understand our nearest star as a complete system.This image was taken by ESA research fellow Daniel Michalik, who wintered at the Amundsen–Scott South Pole Station in Antarctica in 2017. It was taken as a single long exposure with minor contrast and exposure adjustments. At extremely cold temperatures of -60°C, Daniel was required to layer up, use a hot water bottle to keep the camera warm, and to pack his pockets with plentiful spare batteries. The photographer’s stoicism paid off, as the image was shortlisted as a finalist in the Royal Society photography competition in 2017. Another of Daniel’s images, published here, was the overall winner of the ‘Astronomy’ category.Between 3 and 5 March ESA is highlighting the effects of space weather with the #AuroraHunters SocialSpace event at the other ‘end’ of the planet, in Tromsø, Norway. Follow the conversation on Twitter to see more great aurora images!

Image: Michalik/NSF/SPT

More Blue Marbles

Earth is not the only blue marble in the solar system, there is also Uranus (L) and Neptune (R).

Image: NASA, ESA, A. Simon (NASA Goddard Space Flight Center), and M.H. Wong and A. Hsu (University of California, Berkeley)

ESA: Sitting beyond Jupiter and Saturn in our Solar System, these two planets have only been visited once by a spacecraft, albeit briefly. NASA’s Voyager 2 spacecraft swung by Uranus in 1986, and Neptune in 1989, snapping the only close-up detailed images of these distant worlds.

The first images of Neptune revealed a planet with a dynamic atmosphere, including two mysterious dark vortices. Uranus, however, appeared featureless. But these views were just one-time snapshots: they couldn’t capture how the planets’ atmospheres change over time.

Enter the Hubble Space Telescope, which has been making a roughly annual check-up of these distant worlds as they go through protracted seasonal changes in their multi-decades-long orbits – a year on Uranus is 84 Earth years, while Neptune takes 165 of our years to orbit the Sun.

The latest pair of Hubble images are presented here, displaying Uranus (left) alive with activity and Neptune (right) showing off a new dark storm.

The vast bright polar cap across the north pole dominates the image of Uranus. The cap, which may form due to seasonal changes in atmospheric flow, has become much more prominent than in previous observations dating back to the Voyager 2 flyby, when the planet, in the throes of winter, looked bland.

Scientists believe this feature is a result of Uranus’ unique rotation. Unlike every other planet in the Solar System, Uranus is tipped over almost onto its side. Because of this extreme tilt, during the planet’s summer the Sun shines almost directly onto the north pole and never sets. Uranus is now approaching the middle of its 21 year-long summer season and the polar-cap region is becoming more prominent.

Near the edge of the cloud cap is a large cloud of methane ice, while a narrow cloud band encircles the planet north of the equator. It is a mystery how bands like these are confined to such narrow widths, because Uranus and Neptune have very broad westward-blowing wind jets.

The latest images show that Neptune has a new swirling dark storm spanning nearly 11 000 km across – roughly equivalent to the distance between Lisbon, Portugal and Tokyo, Japan. It is accompanied by bright white ‘companion clouds’ formed when the flow of ambient air is perturbed and diverted upward over the dark vortex, causing gases to freeze into methane ice crystals. Like Jupiter’s Great Red Spot, the dark vortices swirl in an anti-cyclonic direction and seem to dredge up material from deeper levels in the ice giant’s atmosphere.

Both Uranus and Neptune are classified as ‘ice giant’ planets, which are fundamentally different to the gas giants like Jupiter and Saturn. They have no solid surface but rather layers of hydrogen and helium surrounding a water-rich interior, itself perhaps wrapped around a rocky core. Atmospheric methane absorbs red light but allows blue-green light to be scattered back into space, giving each planet a characteristic cyan hue.

Analysing these worlds will help scientists better understand the diversity and similarities of the planets in our own Solar System as well as the thousands of exoplanets discovered in other solar systems – the vast majority of which fall into the size range of Neptune and Uranus.

Indeed, ESA’s upcoming exoplanet mission Cheops will focus on analysing stars that are known to host Earth to Uranus- and Neptune-sized planets, providing a first step-characterisation into the nature of these alien worlds.

Given a favourable alignment of Jupiter to provide gravity assists in the late 2020s-early 2030s, NASA and ESA have also been studying concepts to send a mission to the ice giants to better understand this little-understood class of planets.

These images were captured in late 2018 as part of the Outer Planet Atmospheres Legacy (OPAL) program, and first published on 7 February 2019. This caption is based on the original release.

Vega-C Rocket Motor Test

Click

What power! ESA provided a link to a Hi-Res version 3.65 MB, it’s worth the time even on slow connection.

ESA – On 28 January 2019, the first qualification model of the P120C solid-propellant motor, in the configuration for Vega-C, was static fired on the test stand at Europe’s Spaceport in French Guiana.During a burn time of 135 seconds, the P120C delivered a maximum thrust of 4650 kN. No anomalies were seen and the performance met expectations.

Image: ESA

Space19+

“In this interview the Director General discusses the Space19+ proposal including his plans for space programmes to be carried out by the Agency beyond 2019, covering all aspects of space activities: science and exploration, applications, access to space, operations, research and development. The Space19+ plan also puts ESA in a world-leading position in the emerging field of space safety and security.” — ESA

A final update to the snow saga from the day before yesterday, I finished with the snow clean up from the storm we had. I had a few centimeters of new snow to get rid of, so out I went. I managed to get the vehicles cleaned off and moved around and I didn’t lose anything that I know of (LOL). I waited until the heat of the day, -18 C. As long as nothing freezes today, being a remarkably steady -27 C, I should be fine. As a matter of fact the forecast for tomorrow includes rain, that should be fun. When I get back from taking a friend for a post-operative check up I will spend some time trying to get some of the snow from the roof it’s a lot of snow and the rain will absorb and add weight.

ESA Hitches a Ride

Image: KARI

Check out the links, I’ve got a few new bookmarks.  Nice job ESA.

ESA:  The first ESA-funded space weather monitoring instrument was launched on 4 December 2018, hitching a ride on South Korea’s new geostationary satellite, GEO-KOMPSAT-2A – the Geostationary Korea Multi-Purpose Satellite-2A.

The satellite, seen in this image, was lofted into orbit on an Ariane rocket from Europe’s Spaceport in Kourou, French Guiana, and will provide meteorological monitoring over the Asia-Pacific region as well as data on space weather.

Space weather’ describes the constantly changing conditions in space as a result of the unpredictable behaviour of our active Sun.

This dynamic solar activity changes the space environment, causing variations in magnetic and electric fields, and levels of high-energy particles and radiation around our planet. Such changes can cause impair satellites, disturb telecommunication and satellite navigation, and damage with crucial infrastructure on Earth, such as power grids.

ESA’s Service Oriented Spacecraft Magnetometer (SOSMAG) instrument has four tiny sensors that will measure Earth’s magnetic field and provide data on how space weather affects it.

The SOSMAG kit is designed ultimately to be mounted on a variety of different spacecraft, in an array of orbits, which together will give a fuller picture of Earth’s space weather environment. These ‘hosted payloads’ boost efficiency and reduce cost, while providing critical data to be fed into ESA’s Space Weather Services Network.

Find out more about the network, ESA’s future Distributed Space Weather Sensor System, and the upcoming Lagrange mission to monitor the Sun, all part of the Agency’s plan to monitor hazards in space and one day to mitigate them.

The SOSMAG instrument is funded by ESA’s Space Situational Awareness programme, and was built by an industrial consortium consisting of the Austrian Academy of Sciences, the Space Research Institute (IWF), Magson GmbH, the Institut für Geophysik und Extraterrestrische Physik of TU Braunschweig and the Blackett Laboratory of Imperial College London (ICL).

Contrived View of the Solar North Pole

We have not seen an image of the solar poles since the Ulysses mission ended in 2009. Now ESA has figured out a way to contrive a view of the poles once again. Looking at the image it appears to be a little “off” in the way it is put together, but what a nice effort – great job ESA! This technique is quite timely because while we are at the bottom of a solar cycle there are signs a new solar cycle could be in the very-very early stages of beginning.

A tiny sunspot formed a couple of weeks ago at a very high latitude with the correct magnetic configuration for the next cycle. Now that sunspot apparently disappeared because I’ve not seen it since, however there is hope and high latitude sunspots a good sign.

Image: ESA/Royal Observatory of Belgium

ESA:  We’ve sent numerous missions into space to study the Sun; past and present solar explorers include ESA’s Proba-2 (PRoject for OnBoard Autonomy 2) and SOHO (SOlar Heliospheric Observatory) probes, NASA’s SDO and STEREO missions (the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory, respectively), and the joint NASA/ESA Ulysses mission. However, most of these spacecraft have focused mainly on the equatorial regions of the Sun, with the notable exception of Ulysses – this probe observed our star at a wide range of latitudes for nearly two decades, until the mission came to an end in 2009.

Despite Ulysses’ insights, this focus on low solar latitudes has left the Sun’s poles relatively unexplored. A lack of imaging data means that scientists must get creative in piecing together pictures of the Sun’s polar regions – as seen here in this artificial image of the solar north pole.

This image extrapolates low-latitude Proba-2 observations of the Sun to reconstruct a view of the star’s pole. While the poles cannot be seen directly, when spacecraft observe the solar atmosphere they gather data on everything along their line of sight, also viewing the atmosphere extending around the disc of the Sun (the apparent glow around the main disc of the Sun, which also extends over the poles). Scientists can use this to infer the appearance of the polar regions. In order to estimate the properties of the solar atmosphere over the poles, they continuously image the main disc of the Sun and take small slivers of data from the outer and upper regions of the star as it rotates, compensating for the fact that the Sun does not rotate at constant speeds at all latitudes. Over time, these small arrays of data can be combined to approximate a view of the pole, as shown in this view. More in-depth information on the process used to create this image can be found here.

Signs of this patchwork approach can be seen in this image, which comprises data from Proba-2’s extreme-ultraviolet SWAP imager. The line across the middle is created due to small changes in the solar atmosphere that occurred over the timeframe of creating this image. This image also shows a bright bulge on the upper-right side of the Sun; this is created by a low-latitude coronal hole rotating around the solar disc. The polar coronal hole region, which can be seen as the dark patch in the centre of the solar disc, is a source of fast solar wind. It is seen here to contain a subtle network of light and dark structures, which may cause variations in solar wind speed.

While such views go a way towards revealing the secrets of the Sun’s poles – such as how waves propagate across our star, and how it may create phenomena such as coronal holes and ejections that go on to influence space weather around the Earth – direct observations of these regions are needed in order to build on past data gathered by Ulysses. ESA’s Solar Orbiter aims to plug this knowledge gap when it launches in 2020. This mission will study the Sun in detail from latitudes high enough to explore its polar regions, also revealing how its magnetic field and particle emissions impact its cosmic environment – including the area of space that we call home.