Category Archives: JWST

So Far So Good for JWST

This is the transport vehicle for the James Webb Space Telescope during the now completed acoustical and vibration testing phases. The transport vehicle includes a mobile clean-room and having worked in a clean-room I can tell you that’s not a small feat by itself.

The testing was a success because it did find an issue which was resolved. The testing process is described rater well in the following press release from NASA ( Credits: NASA’s Goddard Space Flight Center/Chris Gunn) :

NASA’s James Webb Space Telescope has successfully passed another series of critical testing milestones on its march to the launch pad.

In recent acoustic and sine vibration tests, technicians and engineers exposed Webb’s spacecraft element to brutal dynamic mechanical environmental conditions to ensure it will endure the rigors of a rocket launch to space.

During liftoff, rockets generate extremely powerful vibrations and energetic sound waves that bounce off the ground and nearby buildings and impact the rocket as it makes its way skyward. Technicians and engineers aim to protect Webb from these intense sound waves and vibrations.

To simulate these conditions, flight components are intentionally punished with a long litany of tests throughout different facilities to identify potential issues on the ground. Webb was bombarded by powerful sound waves from massive speakers and then placed on an electrodynamic vibration table and strongly but precisely shaken. Together, these tests mimic the range of extreme shaking that spacecraft experience while riding a rocket to space.

“Webb’s launch vibration environment is similar to a pretty bumpy commercial airplane flight during turbulence,” said Paul Geithner, deputy project manager – technical, James Webb Space Telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “And, its launch acoustic environment is about 10 times more sound pressure, 100 times more intense and four times louder than a rock concert.”

Continue reading

Target For JWST

As if the waiting for the James Webb Space Telescope launch wasn’t hard enough now we know Jupiter’s Great Red Spot is going to be one of the first targets.

NASA (Eric Villard / Laura Betz): NASA’s James Webb Space Telescope, the most ambitious and complex space observatory ever built, will use its unparalleled infrared capabilities to study Jupiter’s Great Red Spot, shedding new light on the enigmatic storm and building upon data returned from NASA’s Hubble Space Telescope and other observatories.

Jupiter’s iconic storm is on the Webb telescope’s list of targets chosen by guaranteed time observers, scientists who helped develop the incredibly complex telescope and among the first to use it to observe the universe. One of the telescope’s science goals is to study planets, including the mysteries still held by the planets in our own solar system from Mars and beyond.

Leigh Fletcher, a senior research fellow in planetary science at the University of Leicester in the United Kingdom, is the lead scientist on the Webb telescope’s observations of Jupiter’s storm. His team is part of a larger effort to study several targets in our solar system with Webb, spearheaded by astronomer Heidi Hammel, the executive vice president of the Association of Universities for Research in Astronomy (AURA). NASA selected Hammel as an interdisciplinary scientist for Webb in 2002.

“Webb’s infrared sensitivity provides a wonderful complement to Hubble visible-wavelength studies of the Great Red Spot,” explained Hammel. “Hubble images have revealed striking changes in the size of the Great Red Spot over the mission’s multi-decade-long lifetime.”

Fletcher and his team plan to use Webb’s mid-infrared instrument (MIRI) to create multispectral maps of the Great Red Spot and analyze its thermal, chemical and cloud structures. The scientists will be able to observe infrared wavelengths that could shed light on what causes the spot’s iconic color, which is often attributed to the sun’s ultraviolet radiation interacting with nitrogen, sulfur and phosphorus-bearing chemicals that are lifted from Jupiter’s deeper atmosphere by powerful atmospheric currents within the storm.

Fletcher explained that using MIRI to observe in the 5 to 7 micrometer range could be particularly revealing for the Great Red Spot, as no other mission has been able to observe Jupiter in that part of the electromagnetic spectrum, and observations in such wavelengths are not possible from Earth. Those wavelengths of light could allow the scientists to see unique chemical byproducts of the storm, which would give insight into its composition.

“We’ll be looking for signatures of any chemical compounds that are unique to the [Great Red Spot]…which could be responsible for the red chromophores,” said Fletcher. Chromophores are the parts of molecules responsible for their color. Fletcher added, “If we don’t see any unexpected chemistry or aerosol signatures…then the mystery of that red color may remain unresolved.”

Webb’s observations may also help determine whether the Great Red Spot is generating heat and releasing it into Jupiter’s upper atmosphere, a phenomenon that could explain the high temperatures in that region. Recent NASA-funded research showed that colliding gravity waves and sound waves, produced by the storm, could generate the observed heat, and Fletcher said Webb might be able to gather data to support this.

“Any waves produced by the vigorous convective activity within the storm must pass through the stratosphere before they reach the ionosphere and thermosphere,” he explained. “So if they really do exist and are responsible for heating Jupiter’s upper layers, hopefully we’ll see evidence for their passage in our data.”

Generations of astronomers have studied the Great Red Spot; the storm has been monitored since 1830, but it has possibly existed for more than 350 years. The reason for the storm’s longevity largely remains a mystery, and Fletcher explained that the key to understanding the formation of storms on Jupiter is to witness their full life cycle — growing, shrinking, and eventually dying. We did not see the Great Red Spot form, and it may not die anytime soon (though it has been shrinking, as documented by images from NASA’s Hubble Space Telescope and other observatories), so scientists must rely on observing “smaller and fresher” storms on the planet to see how they begin and evolve, something that Webb may do in the future, said Fletcher.

“These particular observations will reveal the storm’s vertical structure, which will be an important constraint for numerical simulations of Jovian [Jupiter] meteorology,” he explained. “If those simulations can help explain what Webb observes in the infrared, then we’ll be a step closer to understanding how these gigantic maelstroms live for so long.”

The James Webb Space Telescope will be the world’s premier space science observatory. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Image: NASA, ESA, and A. Simon (NASA Goddard)

James Webb Telescope Update

An update on the James Webb Space Telescope (JWST) from NASA being readied for launch in 2019. This is the point where, even though the launch is a year away, things really start to come together and I’m sure nervous anticipation sets in.

James Webb Telescope Timelapse

This video just puts me in a good mood, not sure why.

The description says: “this time-lapse shows activity in the NASA Johnson Space Center’s Chamber A cleanroom from the arrival of the Webb Telescope’s optical and instrument segment through to its roll out from the chamber after completing its cryogenic testing.”

Lights Out for JWST

It is lights out for the James Webb Space Telescope but in a good way.

I feel better about this than I did about the “shake-test“!

From NASA:
After completion of its vibration and acoustic testing in March, the James Webb Space Telescope – JWST – is shown here undergoing a detailed ‘lights out’ inspection in one of NASA’s cleanrooms at the Goddard Space Flight Center.

This is a special type of visual inspection to check for any forms of contamination. Both bright white LEDs and UV lights are used in order to better search for possible contamination, with the lights inside the cleanroom switched off to improve the contrast.

The low lighting means the image had to be taken with a longer than normal exposure time. This makes the technicians appear somewhat ghostly as they moved about the cleanroom during the exposure.

The image shows the segmented and gold-coated primary mirror of the telescope, which has a diameter of about 6.5 m when unfolded. It consists of 18 hexagonal segments, which will work together as one gigantic state-of-the-art mirror.

In order to fit inside the Ariane 5 rocket that will boost it into space, some segments will be folded, which will then open in orbit.

By the end of April, the telescope and the instruments will be shipped from NASA Goddard Space Flight Center in Maryland to Johnson’s Space Center in Texas where, over the course of the summer, it will go through final cryogenic-temperature testing.

JWST is joint project of NASA, ESA and the Canadian Space Agency, and is scheduled for launch in October 2018 from Europe’s Spaceport in Kourou, French Guiana.4\

Credit: NASA and C. Gunn

JWST Milestone

I remember my days of working in a clean-room, nothing this huge though of course. So the James Webb Space Telescope in one step closer to launch. At the moment we are looking at a 2018 launch from French Guiana at The Spaceport – Arianespace

There is a very nice JWST website with webcams and a nice 3D tour of the telescope.

Video Credit: NASA’s Goddard Space Flight Center/Michael McClare

Preparing A Telescope For Launch

and not just any telescope, this is the James Webb Telescope.

bendingjwst

Image: NASA/Chris Gunn

This from NASA (and Rob Gutro):

The primary mirror of NASA’s James Webb Space Telescope consisting of 18 hexagonal mirrors looks like a giant puzzle piece standing in the massive clean room of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Appropriately, combined with the rest of the observatory, the mirrors will help piece together puzzles scientists have been trying to solve throughout the cosmos.

Webb’s primary mirror will collect light for the observatory in the scientific quest to better understand our solar system and beyond. Using these mirrors and Webb’s infrared vision scientists will peer back over 13.5 billion years to see the first stars and galaxies forming out of the darkness of the early universe. Unprecedented infrared sensitivity will help astronomers to compare the faintest, earliest galaxies to today’s grand spirals and ellipticals, helping us to understand how galaxies assemble over billions of years. Webb will see behind cosmic dust clouds to see where stars and planetary systems are being born. It will also help reveal information about atmospheres of planets outside our solar system, and perhaps even find signs of the building blocks of life elsewhere in the universe.

The Webb telescope was mounted upright after a “center of curvature” test conducted at Goddard. This initial center of curvature test ensures the integrity and accuracy, and test will be repeated later to verify those same properties after the structure undergoes launch environment testing. In the photo, two technicians stand before the giant primary mirror.