Category Archives: Uncategorized

Arianespace VV15 LOST

Arianespace has confirmed the loss of fight VV15 and the FalconEye1 satellite.

The loss occurred about 2 minutes into the flight. I think the other feed may still be active, but here is a replay.

The loss was evident in the control room even before the commentary had related any indication of something amiss.

The cause is yet to be determined but there the problems seemed to begin at the time of the time of separation of the first stage. I will of course update with more but not until later in the day as I will not be near a computer.

This just shows us that while these launches seem to be a routine event these days, it is very much not so.

Ariane Flight VV15 Set to Go

There will be a feed here starting at 00:01 UT / 20:01 ET.

Launch times from Arianespace:

  • 9:53:03 p.m., Washington D.C., USA time
  • 10:53:03 p.m., Kourou, French Guiana time
  • 1:53:03 Universal Time (UTC), on July 11
  • 3:53:03 a.m., Paris, France time, on July 11
  • 5:53:03 a.m., Abu Dhabi, United Arab Emirates (UAE) time, on July 11.

Arianespace to Launch VV15

UPDATE: SCRUBBED DUE TO WEATHER – high-altitude winds. Next launch attempt to be announced. In the meantime here is a Launch Campaign video.

After a couple of days delay due to weather it looks like Arianespace will launch VV15 with FalconEye1 for the Armed Forces of the United Arab Emirates.

Spaceport: French Guiana / Guiana Space Center

The Vega VV15 launch is number fifteenth Vega launch since 2012 and is Ariane’s sixth launch of the year.

According to Arianespace’s website:

The targeted launch date for the mission – designated Flight VV15 in Arianespace’s launcher family numbering system – is July 7, at the following precise liftoff timing:

  • 9:53:03 p.m., Washington D.C., USA time
  • 10:53:03 p.m., Kourou, French Guiana time
  • 1:53:03 Universal Time (UTC), on July 8
  • 3:53:03 a.m., Paris, France time, on July 8
  • 5:53:03 a.m., Abu Dhabi, United Arab Emirates (UAE) time, on July 8.

Mt Etna from Space

One of the worlds most famous (or infamous) volcanoes, this is the view of the recent eruption of Mt. Etna in Italy.

There is a larger version available from NASA – click here. Don’t worry if you have a slower connection, it’s not huge.

NASA: The most recent eruption of Mt. Etna, Italy, began May 30, 2019. New fissure vents opened on the New Southeast Crater, feeding two lava flows that moved down into the Valle del Bove, accompanied by loud explosions. By June 4, when this nighttime ASTER thermal image was acquired, eruption activity had ended.

With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of about 50 to 300 feet (15 to 90 meters), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan’s Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products.

The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

The U.S. science team is located at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. The Terra mission is part of NASA’s Science Mission Directorate, Washington.

More information about ASTER is available at http://asterweb.jpl.nasa.gov/.Image Credit:NASA/METI/AIST/Japan Space Systems, and U.S./Japan ASTER Science Team

Hubble’s View of Messier 59

Here’s the SEDS page for M-59 check out the picture and see the difference.

Hubble et al. (via ESA): This luminous orb is the galaxy NGC 4621, better known as Messier 59. As this latter moniker indicates, the galaxy was listed in the famous catalogue of deep-sky objects compiled by French comet-hunter Charles Messier in 1779. However, German astronomer Johann Gottfried Koehler is credited with discovering the galaxy just days before Messier added it to his collection.   

Modern observations show that Messier 59 is an elliptical galaxy, one of the three main kinds of galaxies along with spirals and irregulars. Ellipticals tend to be the most evolved of the trio, full of old, red stars and exhibiting little or no new star formation. Messier 59, however, bucks this trend somewhat; the galaxy does show signs of star formation, with some newborn stars residing within a disc near the core.

Located in the 2000-strong Virgo Cluster of galaxies within the constellation of Virgo (The Virgin), Messier 59 lies approximately 50 million light-years away from us. This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys.

Image: ESA/Hubble & NASA, P. Cote; CC BY 4.0

Test and Test Again

The first test firing of the new NGIS OmegA rocket first stage was said to be a “success” — I don’t know but it didn’t end so well. That’s why they test though.

Pretty impressive just the same.

Scott Manley has a good video out about the test too – check it out.

A Martian Helicopter

When I first heard about the Martian helicopter I dismissed the idea as folly. How would you even get the thing in the air? Well the Martian atmosphere is very thin, but the gravity on Mars is just over a third of what it is here on Earth (Mars and Earth comparison). Here gravity is 9.81 m/s2 and on Mars it is 3.6 m/s2

.

So the helicopter is reality and will be launching with NASA’s Mars 2020 rover in July 2020. Can you imagine? Flying a helicopter millions of miles away with a multiple minute time delay to account for the time the control signals get to Mars and back, ranging from 4 to 24 minutes is going to be a big challenge.

Hubble Sees Asteroid Coming Apart

NASA: A small asteroid has been caught in the process of spinning so fast it’s throwing off material, according to new data from NASA’s Hubble Space Telescope and other observatories.

Images from Hubble show two narrow, comet-like tails of dusty debris streaming from the asteroid (6478) Gault. Each tail represents an episode in which the asteroid gently shed its material — key evidence that Gault is beginning to come apart.

Discovered in 1988, the 2.5-mile-wide (4-kilometer-wide) asteroid has been observed repeatedly, but the debris tails are the first evidence of disintegration. Gault is located 214 million miles (344 million kilometers) from the Sun. Of the roughly 800,000 known asteroids between Mars and Jupiter, astronomers estimate that this type of event in the asteroid belt is rare, occurring roughly once a year.

Watching an asteroid become unglued gives astronomers the opportunity to study the makeup of these space rocks without sending a spacecraft to sample them.

“We didn’t have to go to Gault,” explained Olivier Hainaut of the European Southern Observatory in Germany, a member of the Gault observing team. “We just had to look at the image of the streamers, and we can see all of the dust grains well-sorted by size. All the large grains (about the size of sand particles) are close to the object and the smallest grains (about the size of flour grains) are the farthest away because they are being pushed fastest by pressure from sunlight.”  

Gault is only the second asteroid whose disintegration has been strongly linked to a process known as a YORP effect. (YORP stands for “Yarkovsky–O’Keefe–Radzievskii–Paddack,” the names of four scientists who contributed to the concept.) When sunlight heats an asteroid, infrared radiation escaping from its warmed surface carries off angular momentum as well as heat. This process creates a tiny torque that can cause the asteroid to continually spin faster. When the resulting centrifugal force starts to overcome gravity, the asteroid’s surface becomes unstable, and landslides may send dust and rubble drifting into space at a couple miles per hour, or the speed of a strolling human. The researchers estimate that Gault could have been slowly spinning up for more than 100 million years.

Piecing together Gault’s recent activity is an astronomical forensics investigation involving telescopes and astronomers around the world. All-sky surveys, ground-based telescopes, and space-based facilities like the Hubble Space Telescope pooled their efforts to make this discovery possible.

The initial clue was the fortuitous detection of the first debris tail, observed on Jan. 5, 2019, by the NASA-funded Asteroid Terrestrial-Impact Last Alert System (ATLAS) telescope in Hawaii. The tail also turned up in archival data from December 2018 from ATLAS and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescopes in Hawaii. In mid-January, a second shorter tail was spied by the Canada–France–Hawaii Telescope in Hawaii and the Isaac Newton Telescope in Spain, as well as by other observers. An analysis of both tails suggests the two dust events occurred around Oct. 28 and Dec. 30, 2018. 

Follow-up observations with the William Herschel Telescope and ESA’s (European Space Agency) Optical Ground Station in La Palma and Tenerife, Spain, and the Himalayan Chandra Telescope in India measured a two-hour rotation period for the object, close to the critical speed at which a loose “rubble-pile” asteroid begins to break up.

“Gault is the best ‘smoking gun’ example of a fast rotator right at the two-hour limit,” said team member Jan Kleyna of the University of Hawaii in Honolulu.

An analysis of the asteroid’s surrounding environment by Hubble revealed no signs of more widely distributed debris, which rules out the possibility of a collision with another asteroid causing the outbursts. 

The asteroid’s narrow streamers suggest that the dust was released in short bursts, lasting anywhere from a few hours to a few days. These sudden events puffed away enough debris to make a “dirt ball” approximately 500 feet (150 meters) across if compacted together. The tails will begin fading away in a few months as the dust disperses into interplanetary space. 

Based on observations by the Canada–France–Hawaii Telescope, the astronomers estimate that the longer tail stretches over half a million miles (800,000 kilometers) and is roughly 3,000 miles (4,800 kilometers) wide. The shorter tail is about a quarter as long.

Only a couple of dozen active asteroids have been found so far. Astronomers may now have the capability to detect many more of them because of the enhanced survey capabilities of observatories such as Pan-STARRS and ATLAS, which scan the entire sky. “Asteroids such as Gault cannot escape detection anymore,” Hainaut said. “That means that all these asteroids that start misbehaving get caught.”

The researchers hope to monitor Gault for more dust events.

The team’s results have been accepted for publication by The Astrophysical Journal Letters.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. 

Credits: NASA, ESA, K. Meech and J. Kleyna (University of Hawaii), and O. Hainaut (European Southern Observatory)


Hubble Looks at Neptune

NASA: In 1989, NASA’s Voyager 2 zipped past Neptune—its final planetary target before speeding to the outer limits of the solar system. It was the first time a spacecraft had visited the remote world. As the craft zoomed by, it snapped pictures of two giant storms brewing in Neptune’s southern hemisphere. Scientists dubbed the storms “The Great Dark Spot” and “Dark Spot 2.”

Just five years later, in 1994, NASA’s Hubble Space Telescope took sharp images of Neptune from Earth’s distance of 2.7 billion miles (4.3 billion kilometers). Scientists were eager to get another look at the storms. Instead, Hubble’s photos revealed that both the Earth-sized Great Dark Spot and the smaller Dark Spot 2 had vanished.

“It was certainly a surprise,” recalls Amy Simon, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We were used to looking at Jupiter’s Great Red Spot, which presumably had been there for more than a hundred years.” Planetary scientists immediately began constructing computer simulations in order to understand the Great Dark Spot’s mysterious disappearance.

Now part of the Outer Planet Atmospheres Legacy (OPAL) project, Simon and her colleagues are beginning to answer these questions. Thanks to images captured by Hubble, the team has not only witnessed a storm’s formation for the first time but developed constraints that pinpoint the frequency and duration of the storm systems.

The Birth of a Storm

In 2015, the OPAL team began a yearly mission to analyze images of Neptune captured by Hubble and detected a small dark spot in the southern hemisphere. Each year since, Simon and her colleagues have viewed the planet and monitored the storm as it dissipated. In 2018, a new dark spot emerged, hovering at 23 degrees north latitude.

“We were so busy tracking this smaller storm from 2015, that we weren’t necessarily expecting to see another big one so soon,” says Simon about the storm, which is similar in size to the Great Dark Spot. “That was a pleasant surprise. Every time we get new images from Hubble, something is different than what we expected.”

What’s more, the storm’s birth was caught on camera. While analyzing Hubble images of Neptune taken from 2015 to 2017, the team discovered that several small, white clouds formed in the region where the most recent dark spot would later appear. They published their findings March 25 in the journal Geophysical Research Letters.

The high-altitude clouds are made up of methane ice crystals, which give them their characteristic bright, white appearance. These companion clouds are thought to hover above the storms, similar to the way that lenticular clouds cap tall mountains on Earth. Their presence several years before a new storm was spotted suggests that dark spots may originate much deeper in the atmosphere than previously thought.

“In the same way a terrestrial Earth satellite would watch Earth’s weather, we observe the weather on Neptune,” says Glenn Orton, a planetary scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, who also serves on the OPAL project. Just as hurricanes are tracked on Earth, Hubble’s images revealed the dark spot’s meandering path. In a span of nearly 20 hours, the storm drifted westward, moving slightly slower than Neptune’s high-speed winds.

But these Neptunian storms are different from the cyclones we see on Earth or Jupiter. So are the wind patterns that propel them. Similar to the rails that keep errant bowling balls from bounding into the gutters, thin bands of wind currents on Jupiter keep the Great Red Spot on a set path. On Neptune, wind currents operate in much wider bands around the planet, allowing storms like the Great Dark Spot to slowly drift across latitudes. The storms typically hover between westward equatorial wind jets and eastward-blowing currents in the higher latitudes before strong winds pull them apart.

Still more observations are needed. “We want to be able to study how the winds are changing over time,” says Simon.

Average Lifespan?

Simon is also part of a team of scientists led by undergraduate student Andrew Hsu of the University of California, Berkeley, who pinpointed how long these storms last and how frequently they occur.

They suspect that new storms crop up on Neptune every four to six years. Each storm may last up to six years, though two-year lifespans were more likely, according to findings published March 25 in the Astronomical Journal.

A total of six storm systems have been spotted since scientists first set their sights on Neptune. Voyager 2 identified two storms in 1989. Since Hubble launched in 1990, it has viewed four more of these storms.

In addition to analyzing data collected by Hubble and Voyager 2, the team ran computer simulations that charted a total of 8,000 dark spots swirling across the icy planet. When matched to 256 archival images, these simulations revealed that Hubble likely would have spotted approximately 70 percent of the simulated storms that occurred over the course of a year and roughly 85 to 95 percent of storms with a two-year lifespan.

Still, Questions Swirl.

Conditions on Neptune are still largely a mystery. Planetary scientists hope to next study changes in the shape of the vortex and wind speed in the storms. “We have never directly measured winds within Neptune’s dark vortices, but we estimate the wind speeds are in the ballpark of 328 feet (100 meters) per second, quite similar to wind speeds within Jupiter’s Great Red Spot,” says Michael Wong, a planetary scientist at the University of California, Berkeley. More frequent observations using the Hubble telescope, he notes, will help paint a clearer picture of how storm systems on Neptune evolve.

Simon says that discoveries on Neptune will have implications for those studying exoplanets in our galaxy that are similar in size to the ice giants. “If you study the exoplanets and you want to understand how they work, you really need to understand our planets first,” says Simon. “We have so little information on Uranus and Neptune.”

All agree that these recent findings have spurred a desire to track our furthest major planetary neighbor in even greater detail. “The more you know, the more you realize you don’t know,” says Orton.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. The researchers used data acquired from the Hubble Space Telescope associated with the OPAL program and archived by the STScI.

For more information about Hubble, visit: www.nasa.gov/hubbleBy Jennifer Leman

NASA’s Goddard Space Flight Center, Greenbelt, Md.


NASA/ESA/GSFC/JPL