Parachute Testing



I must confess, every time I see one of these parachute tests I quickly start wondering how that anchor point is constructed. I know, technically it’s not difficult, I just seem to have this need to know what the force at the base of the column is. Some day I will gather the data and do an estimate – and yes I say that every time. I forget quickly.

Check out what the parachute must do and be amazed at what the parachute must do.

From ESA:

This is a test version of the parachute that will slow the Schiaparelli entry, descent and landing module as they plummet through the martian atmosphere on 19 October.

When the module is about 11 km from the surface, descending at about 1700 km/h, the parachute will be deployed by a mortar. The parachute will slow the module to about 200 km/h by 1.2 km above the surface, at which stage it will be jettisoned.

The parachute is a ‘disc-gap-band’ type, as used for the ESA Huygens probe descent to Titan and for all NASA planetary entries so far.

The canopy, with a normal diameter of 12 m, is made from nylon fabric and the lines are made from Kevlar, a very strong synthetic material.

Tests of how the parachute will inflate at supersonic speeds were carried out with a smaller model in a supersonic wind tunnel in the NASA Glenn Research Center.

The full-scale qualification model, pictured here, was used to test the pyrotechnic mortar deployment and the strength of the parachute in the world’s largest wind tunnel, operated by the US Air Force at the National Full-Scale Aerodynamic Complex in the Ames Research Center, California.

The tower is needed to place the mortar – the horizontal tube at the top of the tower – at the centre of the wind tunnel for testing.

Schiaparelli was launched on 14 March with the Trace Gas Orbiter on a Proton rocket from the Baikonur Cosmodrome in Kazakstan.

Image: USAF Arnold Engineering Development Complex

Saturn and Enceladus


Another beautiful image from the Cassini spacecraft orbiting around Saturn.

From NASA:
At first glance, the most obvious features in this image from NASA’s Cassini spacecraft are Saturn’s rings and the icy moon Enceladus. Upon closer inspection, Saturn’s night side is also visible (near top center), faintly illuminated by sunlight reflected off the rings.

In this view, icy Enceladus (313 miles or 504 kilometers across) hangs in the space between Cassini and the giant planet.

This view looks toward the sunlit side of the rings from 0.14 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Aug. 18, 2015.

The view was acquired at a distance of approximately 87,000 miles (139,000 kilometers) from Enceladus. Image scale is 5 miles (8 kilometers) per pixel.

Image: NASA/JPL-Caltech/Space Science Institute

Almost Home for Juno


This view of Jupiter was taken from the Juno spacecraft on 21 June 2016 as it approaches the giant planet. The distinctive banding of the planet is becoming evident and we can easily see the four major moons and they are, in order from left to right: Ganymede, Callisto, Io and Europa. You can see these moons from Earth with just a pair of binoculars too, give it a try.

Juno is approaching Jupiter over the north pole so we are going to get a very different perspective than we got from other missions.

If you are thinking the image is a little blurry no to worry; Junocam is designed to take high resolution images of the Jovian atmosphere and not distance shots. This image was taken from 10.9 million km / 6.8 million miles.

One week to go!

Image: NASA/JPL-Caltech/MSSS

Neptune Has a New Spot


Neptune has a new spot and thanks to Hubble we can see it. Click the image for the larger version.

From Hubble (via NASA):
New images obtained on May 16, 2016, by NASA’s Hubble Space Telescope confirm the presence of a dark vortex in the atmosphere of Neptune. Though similar features were seen during the Voyager 2 flyby of Neptune in 1989 and by the Hubble Space Telescope in 1994, this vortex is the first one observed on Neptune in the 21st century.

The discovery was announced on May 17, 2016, in a Central Bureau for Astronomical Telegrams (CBAT) electronic telegram by University of California at Berkeley research astronomer Mike Wong, who led the team that analyzed the Hubble data.

Neptune’s dark vortices are high-pressure systems and are usually accompanied by bright “companion clouds,” which are also now visible on the distant planet. The bright clouds form when the flow of ambient air is perturbed and diverted upward over the dark vortex, causing gases to likely freeze into methane ice crystals.

“Dark vortices coast through the atmosphere like huge, lens-shaped gaseous mountains,” Wong said. “And the companion clouds are similar to so-called orographic clouds that appear as pancake-shaped features lingering over mountains on Earth.”

Beginning in July 2015, bright clouds were again seen on Neptune by several observers, from amateurs to astronomers at the W. M. Keck Observatory in Hawaii. Astronomers suspected that these clouds might be bright companion clouds following an unseen dark vortex. Neptune’s dark vortices are typically only seen at blue wavelengths, and only Hubble has the high resolution required for seeing them on distant Neptune.

In September 2015, the Outer Planet Atmospheres Legacy (OPAL) program, a long-term Hubble Space Telescope project that annually captures global maps of the outer planets, revealed a dark spot close to the location of the bright clouds, which had been tracked from the ground. By viewing the vortex a second time, the new Hubble images confirm that OPAL really detected a long-lived feature. The new data enabled the team to create a higher-quality map of the vortex and its surroundings.

Neptune’s dark vortices have exhibited surprising diversity over the years, in terms of size, shape, and stability (they meander in latitude, and sometimes speed up or slow down). They also come and go on much shorter timescales compared to similar anticyclones seen on Jupiter; large storms on Jupiter evolve over decades.

Planetary astronomers hope to better understand how dark vortices originate, what controls their drifts and oscillations, how they interact with the environment, and how they eventually dissipate, according to UC Berkeley doctoral student Joshua Tollefson, who was recently awarded a prestigious NASA Earth and Space Science Fellowship to study Neptune’s atmosphere. Measuring the evolution of the new dark vortex will extend knowledge of both the dark vortices themselves, as well as the structure and dynamics of the surrounding atmosphere.
Continue reading

Mystery Spots on Ceres

A nice look at some of those mysterious white spots on Ceres. The area shown above is some of the brightest on the dwarf planet.

From the Dawn vantage point of just 385 km / 240 miles scientists believe the white material is some of salt.

Looking in the center of the image at the grooved or canyon-like features it appears the ‘salts’ are not inside at the bottom – click the image to see the larger version. The mountainous feature is completely covered including irregular terrain. So knowing what type of salt we are looking at will go a long ways towards solving the second part and larger part of the mystery: how the salts came to be where they are.

The resolution of the image is very good showing 35 meters / 120 feet per pixel. I am going out on a limb and say those canyon-like features are about 210 meters / 690 feet across.


Looking Towards The Archer


From Hubble:
This colorful and star-studded view of the Milky Way galaxy was captured when the NASA/ESA Hubble Space Telescope pointed its cameras towards the constellation of Sagittarius (The Archer). Blue stars can be seen scattered across the frame, set against a distant backdrop of red-hued cosmic companions. This blue litter most likely formed at the same time from the same collapsing molecular cloud.

The color of a star can reveal many of its secrets. Shades of red indicate a star much cooler than the sun, so either at the end of its life, or much less massive. These lower-mass stars are called red dwarfs and are thought to be the most common type of star in the Milky Way. Similarly, brilliant blue hues indicate hot, young, or massive stars, many times the mass of the sun.

A star’s mass decides its fate; more massive stars burn brightly over a short lifespan, and die young after only tens of millions of years. Stars like the sun typically have more sedentary lifestyles and live longer, burning for approximately ten billion years. Smaller stars, on the other hand, live life in the slow lane and are predicted to exist for trillions of years, well beyond the current age of the universe.

Image credit: ESA/NASA
Text credit: European Space Agency

Happy Solstice!


A little déjà vu? By the way the moon is full today too and this is known as the Strawberry Moon, not for any color, rather the beginning of Strawberry season in the north.

Today the Sun reaches its most northern point in the sky in the northern hemisphere and the lowest in the southern hemisphere.

Put another way,  for the northern hemisphere: the June solstice is when the subsolar point or that point where the sun is perceived to be directly over head, is at the northern most latitude it will attain before due to the tilt of the Earth on its axis and is on the Tropic of Cancer (23.44 deg). After the June Solstice the Sun will day by day become lower in the northern sky until the December solstice when it rises to its lowest point of the year.

The southern hemisphere experiences the opposite, so today the Sun is at its lowest point and after today will gradually reach higher in sky until the December solstice.

The moment of the June Solstice occurs today at 22:34 UTC.  US Naval Observatory.

More at:

My typical June solstice tradition is to take a nice long walk at sunrise, heavy rain made me skip the walk.


Image: Creative Commons