Category Archives: Cool Stuff

Planet Formation Around Binary Star


A composite image of the HD 142527 binary star system from data captured by the Atacama Large Millimeter/submillimeter Array shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has “frozen out,” forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system.

Details at NRAO

Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ)

LIGO Details

Now for some more detail on the discovery of gravitational waves.

The press release from the Caltech LIGO website:

LIGO Opens New Window on the Universe with Observation of Gravitational Waves from Colliding Black Holes

WASHINGTON, DC/Cascina, Italy

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.

Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
Continue reading

The Smith Cloud


Here is a  composite image showing the size and location of the Smith Cloud on the sky, note the scale size of the full moon. The cloud appears in false-color in this image as observed  by the Green Bank Telescope in West Virginia. While the cloud was observed in radio wavelengths, the visible-light image of the background star field shows the cloud’s location in the direction of the constellation Aquila.
Credits: Saxton/Lockman/NRAO/AUI/NSF/Mellinger
From NASA:

Though hundreds of enormous, high-velocity gas clouds whiz around the outskirts of our galaxy, this so-called “Smith Cloud” is unique because its trajectory is well known. New Hubble observations suggest it was launched from the outer regions of the galactic disk, around 70 million years ago. The cloud was discovered in the early 1960s by doctoral astronomy student Gail Smith, who detected the radio waves emitted by its hydrogen.

The cloud is on a return collision course and is expected to plow into the Milky Way’s disk in about 30 million years. When it does, astronomers believe it will ignite a spectacular burst of star formation, perhaps providing enough gas to make 2 million suns.

Read and see more here.

New View of the Nasca Lines


I haven’t seen a Nasca story in a long time, this is great! Click the image for a much larger view.

From NASA:

In just two ten-minute overflights, an airborne NASA synthetic aperture radar proved it could pinpoint areas of disturbance in Peru’s Nasca lines World Heritage Site. The data collected on the two flights will help Peruvian authorities fully catalog the thousand-year-old designs drawn on the ground in and around the site for the first time, as well as giving them a new tool for protecting the fragile constructions from both careless humans and natural disturbances such as floods.

The top frame shows a portion of the mesa-top site in a Google Earth image. Drainage gullies circle the mesa where the Nasca people constructed lines several miles long, enormous polygons, and animal figures simply by moving rocks. A shape called the Hummingbird is faintly visible above and to the left of the scale line, its long beak ending below a road that cuts diagonally from the right edge of the image to the center.

In the synthetic aperture radar image of the same site, below, areas of disturbance appear dark. There are extensive areas of disturbance around the Hummingbird as well as a pathway down the gully directly above the glyph. Other small disturbances may have been caused by erosion in the dry creekbeds.

NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), developed and managed by the Jet Propulsion Laboratory, Pasadena, California, can record changes on the ground beneath the aircraft that occur between multiple flights, which take exactly the same flight path. The instrument is used to monitor how volcanoes, earthquakes, and other natural hazards are changing Earth. Principal investigator Bruce Chapman of JPL noted that UAVSAR is ideally suited for observing the Nasca site because the region has virtually no vegetation and receives no rainfall whatsoever in most years, meaning that natural disturbances are minimal.

Image Credit:NASA/JPL-Caltech/Google