Category Archives: Hubble

NGC 6744 Seen By Hubble

Nice job Hubble!

The original caption: This image taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 (WFC3) shows a beautiful spiral galaxy called NGC 6744. At first glance, it resembles our Milky Way albeit larger, measuring more than 200,000 light-years across compared to a 100,000-light-year diameter for our home galaxy.

NGC 6744 is similar to our home galaxy in more ways than one. Like the Milky Way, NGC 6744 has a prominent central region packed with old yellow stars. Moving away from the galactic core, one can see parts of the dusty spiral arms painted in shades of pink and blue; while the blue sites are full of young star clusters, the pink ones are regions of active star formation, indicating that the galaxy is still very lively.

In 2005, a supernova named 2005at (not visible in this image) was discovered within NGC 6744, adding to the argument of this galaxy’s liveliness. SN 2005at is a Type Ic supernova, formed when a massive star collapses on itself and loses its hydrogen envelope.

Image credit: ESA/Hubble & NASA; acknowledgment: Judy Schmidt
Text credit: ESA (European Space Agency)

Hubble’s View of Saturn

A beautiful look at Saturn not from Cassini but the Hubble Space Telescope. Any time I look at Saturn through a telescope I am struck at what a gem the planet is.

The caption (and image) from NASA, ESA, Amy Simon and the OPAL Team, and J. DePasquale (STScI): Saturn is by far the solar system’s most photogenic planet, and in this latest Hubble Space Telescope snapshot it is especially so because Saturn’s magnificent ring system is near its maximum tilt toward Earth (which was in 2017).

Hubble was used to observe the planet on June 6, 2018, when Saturn was only approximately 1.36 billion miles from Earth, nearly as close to us as it ever gets.

Saturn was photographed as it approached a June 27 opposition, when the planet is directly opposite to the Sun in the night sky and is at its yearly closest distance to the Earth. Though all of the gas giants boast rings, Saturn’s are the largest and most spectacular, stretching out eight times the radius of the planet.

Saturn’s stunning rings were first identified as a continuous disk around the planet by Dutch astronomer Christiaan Huygens in 1655. 325 years later, NASA’s Voyager 1 spacecraft flyby of Saturn resolved thousands of thin, fine ringlets. Data from NASA’s Cassini mission suggests the rings formed 200 million years ago, roughly around the time of the dinosaurs and Earth’s Jurassic period. The gravitational disintegration of one of Saturn’s small moons created myriad icy debris particles, and collisions today likely continually replenish the rings.

Visible in this Hubble image are the classic rings as recorded by early skywatchers. From the outside in are the A ring with the Encke Gap, the Cassini Division, the B ring, and the C ring with the Maxwell Gap.

Saturn’s appearance changes due to its seasons, caused by the planet’s 27-degree axial tilt. It is now summer in Saturn’s northern hemisphere and the atmosphere is more active. This may be responsible for a string of bright clouds visible near the northern polar region that are the remnants of a disintegrating storm. Small, mid-latitude puffs of clouds are also visible. Hubble’s view also resolves a hexagonal pattern around the north pole, a stable and persistent wind feature discovered during the Voyager flyby in 1981.

Saturn’s colors come from hydrocarbon hazes above the ammonia crystals in the upper cloud layers. Unseen lower-level clouds are either ammonium hydrosulfide or water. The planet’s banded structure is caused by the winds and the clouds at different altitudes.

This is the first image of Saturn taken as part of the Outer Planet Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets.

L

Another Gem From Hubble

ESA – This busy image is a treasure trove of wonders. Bright stars from the Milky Way sparkle in the foreground, the magnificent swirls of several spiral galaxies are visible across the frame, and a glowing assortment of objects at the center makes up a massive galaxy cluster. Such clusters are the biggest objects in the universe that are held together by gravity and can contain thousands of galaxies of all shapes and sizes. Typically, they have a mass of about one million billion times the mass of the Sun — unimaginably huge!

Their incredible mass makes clusters very useful natural tools to test theories in astronomy, such as Einstein’s theory of general relativity. This tells us that objects with mass warp the fabric of space-time around them; the more massive the object, the greater the distortion. An enormous galaxy cluster like this one therefore has a huge influence on the space-time around it, even distorting the light from more distant galaxies to change a galaxy’s apparent shape, creating multiple images, and amplifying the galaxy’s light — a phenomenon called gravitational lensing.

This image was taken by Hubble’s Advanced Camera for Surveys and Wide Field Camera 3 as part of an observing program called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming James Webb Space Telescope to study.

Image: Hubble / NASA

Hubblecast: Oumuamua

It seems the recent interstellar wanderer which passed through our solar system ended up getting a speed boost from the encounter.

What is that thing, an asteroid, a comet or what? Between you and me, it is reminiscent of an object I saw on one of the Star Trek movies, the one with the whales I think. Hubblecast doesn’t mention Star Trek but does examine the issue.

Hubble’s Latest Galaxy Collection

The latest galaxy collection that is.

In the image (Credit: ESA/Hubble & NASA) a bit of an Einstein ring by the looks.

About the image from NASA: At first glance, this image is dominated by the vibrant glow of the swirling spiral to the lower left of the frame. However, this galaxy is far from the most interesting spectacle here — behind it sits a galaxy cluster.

Galaxies are not randomly distributed in space; they swarm together, gathered up by the unyielding hand of gravity, to form groups and clusters. The Milky Way is a member of the Local Group, which is part of the Virgo Cluster, which in turn is part of the 100,000-galaxy-strong Laniakea Supercluster.

The galaxy cluster seen in this image is known as SDSS J0333+0651. Clusters such as this can help astronomers understand the distant — and therefore early — universe. SDSS J0333+0651 was imaged as part of a study of star formation in far-flung galaxies. Star-forming regions are typically not very large, stretching out for a few hundred light-years at most, so it is difficult for telescopes to resolve them at a distance. Even using its most sensitive and highest-resolution cameras, Hubble can’t resolve very distant star-forming regions, so astronomers use a cosmic trick: they search instead for galaxy clusters, which have a gravitational influence so immense that they warp the space-time around them. This distortion acts like a lens, magnifying the light of galaxies (and their star-forming regions) sitting far behind the cluster and producing elongated arcs like the one seen in the upper left part of this image.

Hubble’s 28th

More from the 28 years of Hubble! This video shows some from the past year.

Credit: NASA’s Goddard Space Flight Center / Emmalee Mauldin
Music Credits: “Hurricanes Wrap my Heart” by Joshua Robert Moore from stockmusic.net

28 Years of Hubble

I like the Lagoon Nebula, I can see it from here when it is visible and it does make a nice telescope target. My best looks are usually from August, due south, not too late (22:00 on) and warm weather.

Click the image for a larger view here and the links from NASA’s Image of the Day caption from yesterday contains more links to both the image and about Hubble. 28 years, I feel old (lol) – what a great machine Hubble is! Congratulations to the Hubble team both current and past for a mission that started out a bit rocky but ended up being an icon. The team’s resilience and dedication to the project seems to get lost sometimes but without them the mission never would have never amounted to anything near what it has, so my hat is off to you folks!

From the NASA’s Image of the Day (yesterday):

This colorful image, taken by the Hubble Space Telescope, celebrates the Earth-orbiting observatory’s 28th anniversary of viewing the heavens, giving us a window seat to the universe’s extraordinary stellar tapestry of birth and destruction. At the center of this image is a monster young star 200,000 times brighter than our Sun that is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust.

This mayhem is all happening at the heart of the Lagoon Nebula, a vast stellar nursery located 4,000 light-years away, visible in binoculars as merely a smudge of light with a bright core.

The giant star, called Herschel 36, is bursting out of its natal cocoon of material, unleashing blistering radiation and torrential stellar winds, which are streams of subatomic particles, that push dust away in curtain-like sheets. This action resembles the Sun bursting through the clouds at the end of an afternoon thunderstorm.

Herschel 36’s violent activity has blasted holes in the bubble-shaped cloud, allowing astronomers to study this action-packed stellar breeding ground. The hefty star is 32 times more massive and 40,000 times hotter than our Sun, and is nearly nine times our Sun’s diameter. Herschel 36 is still very active because it is young by a star’s standards, only 1 million years old. Based on its mass, it will live for another 5 million years. In comparison, our smaller Sun is 5 billion years old and will live another 5 billion years.

The image shows a region of the nebula measuring about 4 light-years across.

Image Credit: NASA, ESA, and STScI

Hubble Finds a Ring

Be sure to click the image to see a larger version and get a better look at all those galaxies.

The Einstein Ring in the image is amazingly symmetrical. Click here for a larger version of the ring and see for yourself.

Here’s the caption (ESA): This image is packed full of galaxies! A keen eye can spot exquisite elliptical galaxies and spectacular spirals, seen at various orientations: edge-on with the plane of the galaxy visible, face-on to show off magnificent spiral arms, and everything in between.

With the charming name of SDSS J0146-0929, this is a galaxy cluster — a monstrous collection of hundreds of galaxies all shackled together in the unyielding grip of gravity. The mass of this galaxy cluster is large enough to severely distort the space-time around it, creating the odd, looping curves that almost encircle the center of the cluster.

These graceful arcs are examples of a cosmic phenomenon known as an Einstein ring. The ring is created as the light from a distant objects, like galaxies, pass by an extremely large mass, like this galaxy cluster. In this image, the light from a background galaxy is diverted and distorted around the massive intervening cluster and forced to travel along many different light paths toward Earth, making it seem as though the galaxy is in several places at once.

Credit: ESA/Hubble & NASA; Acknowledgment: Judy Schmidt
Text: European Space Agency

MACS j1149.5+223

Beautiful image of a huge galaxy cluster with the name of MACS j1149.5+223. The galaxy cluster is only 5,000-million light-years away!

What’s more, this image contains a star which is “visible” because of a gravitational lens effect, it is actually much more distant. You’ll not see it in the image above but there is a link in ESA’s description below that does show it.

Before we get to the description, I was must musing about who is going to be the one(s) that come up with a way to reconstruct the lensed images? Oh it’s coming all right, has to be, we have too much great talent out there. It will be Nobel Prize time.

The original caption from ESA:

  • This image shows the huge galaxy cluster MACS J1149.5+223, whose light took over 5 billion years to reach us.The huge mass of the cluster is bending the light from more distant objects. The light from these objects has been magnified and distorted due to gravitational lensing. The same effect is creating multiple images of the same distant objects.

    Astronomers using the NASA/ESA Hubble Space Telescope have found the most distant star ever discovered. The hot blue star existed only 4.4 billion years after the Big Bang. This discovery provides new insight into the formation and evolution of stars in the early Universe, the constituents of galaxy clusters and also on the nature of dark matter.

    Go to Hubble uses cosmic lens to discover most distant star ever observed [heic1525] to learn more.

    Image: NASA, ESA, S. Rodney (John Hopkins University, USA) and the FrontierSN team; T. Treu (University of California Los Angeles, USA), P. Kelly (University of California Berkeley, USA) and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Hubble Measures Distance to a Globular

Distance is a one measure we are continually striving to improve in the broad category of astronomy,  distance really matters!

Hubble is doing its part and now we have a “best yet”  measure to a globular cluster.

Here’s how:

Astronomers using NASA’s Hubble Space Telescope have for the first time precisely measured the distance to one of the oldest objects in the universe, a collection of stars born shortly after the big bang.

This new, refined distance yardstick provides an independent estimate for the age of the universe. The new measurement also will help astronomers improve models of stellar evolution. Star clusters are the key ingredient in stellar models because the stars in each grouping are at the same distance, have the same age, and have the same chemical composition. They therefore constitute a single stellar population to study.

Continue reading