Category Archives: New Horizons

Ice Spider on Pluto

spiderpluto

No, not some science fiction movie, but close, Pluto is very strange.

Credit: NASA / John Hopkins APL / SwRI

From New Horizons:

Sprawling across Pluto’s icy landscape is an unusual geological feature that resembles a giant spider.

“Oh, what a tangled web Pluto’s geology weaves,” said Oliver White, a member of the New Horizons geology team from NASA Ames Research Center, Mountain View, California. “The pattern these fractures form are like nothing else we’ve seen in the outer solar system, and shows once again that anywhere we look on Pluto, we see something different.”

As shown in the enhanced color image below – obtained by NASA’s New Horizons spacecraft on July 14, 2015 – this feature consists of at least six extensional fractures (indicated by white arrows in this annotated version) converging to a point near the center. The longest fractures are aligned roughly north-south, and the longest of all, the informally named Sleipnir Fossa, is more than 360 miles (580 kilometers) long.  The fracture aligned east-west is shorter and reaches less than 60 miles (100 kilometers) long.  To the north and west, the fractures extend across the mottled, rolling plains of the high northern latitudes, and to the south, they intercept and cut through the bladed terrain informally named Tartarus Dorsa.

Curiously, the spider’s “legs” noticeably expose red deposits below Pluto’s surface.

New Horizons scientists think fractures seen elsewhere on Pluto, which tend to be aligned parallel to each other in long belts – rather than intersecting with one another at a nexus, as this feature does – are caused by global-scale extension of Pluto’s water–ice crust.  However, given the curious radiating pattern of the fractures forming the “spider,” it may instead be caused by a focused source of stress in the crust under the point where the fractures converge – for example, due to material welling up from under the surface.  The spider somewhat resembles “radially fractured centers” on Venus called novae (http://photojournal.jpl.nasa.gov/catalog/PIA00150) seen by NASA’s Magellan spacecraft, as well as the Pantheon Fossae formation seen by NASA’s MESSENGER spacecraft on Mercury (http://photojournal.jpl.nasa.gov/catalog/PIA19410).

This image was obtained by New Horizons’ Ralph/Multispectral Visible Imaging Camera (MVIC).  The image resolution is approximately 2,230 feet (680 meters) per pixel.  It was obtained at a range of approximately 21,100 miles (33,900 kilometers) from Pluto, about 45 minutes before New Horizons’ closest approach on July 14, 2015.

Pluto in 3D

pluto3d2

Hopefully you have 3D glasses for this post.  This is an amazing image made as New Horizons encountered Pluto and shows some odd terrain.

If you don’t have glasses but do have access to some sort of clear red and blue plastic (or other material) you can try making your own,  Blue on the right and red on the left.

About the image from NASA and the New Horizons team:
One of the strangest landforms spotted by NASA’s New Horizons spacecraft when it flew past Pluto last July was the “bladed” terrain just east of Tombaugh Regio, the informal name given to Pluto’s large heart-shaped surface feature.

The blades are the dominant feature of a broad area informally named Tartarus Dorsa. They align from north to south, reach hundreds of feet high and are typically spaced a few miles apart. This remarkable landform, unlike any other seen in our solar system, is perched on a much broader set of rounded ridges that are separated by flat valley floors.

This amazing stereo view combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Best resolution is approximately 1,000 feet (310 meters).

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

On Frozen Pond

onfrozenpond

Interesting thought, rivers of liquid nitrogen.

NASA’s New Horizons spacecraft spied several features on Pluto that offer evidence of a time millions or billions of years ago when – thanks to much higher pressure in Pluto’s atmosphere and warmer conditions on the surface – liquids might have flowed across and pooled on the surface of the distant world. “In addition to this possible former lake, we also see evidence of channels that may also have carried liquids in Pluto’s past,” said Alan Stern, Southwest Research Institute, Boulder, Colorado—principal investigator of New Horizons and lead author of the scientific paper.

This feature appears to be a frozen, former lake of liquid nitrogen, located in a mountain range just north of Pluto’s informally named Sputnik Planum. Captured by the New Horizons’ Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Pluto on July 14, 2015, the image shows details as small as about 430 feet (130 meters). At its widest point the possible lake appears to be about 20 miles (30 kilometers) across.

Credits: NASA/JHUAPL/SwRI

Pluto’s Haze

PlutosHaze

Who would have guessed the atmosphere of Pluto could be this complex.

From New Horizons:
This image of haze layers above Pluto’s limb was taken by the Ralph/Multispectral Visible Imaging Camera (MVIC) on NASA’s New Horizons spacecraft. About 20 haze layers are seen; the layers have been found to typically extend horizontally over hundreds of kilometers, but are not strictly parallel to the surface. For example, white arrows indicate a haze layer about three miles (five kilometers) above the surface on the left, which has descended to the surface at the right.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/AAAS/Science

Pluto’s North

plutonorth

Spectacular!

NASA / New Horizons:

Long canyons run vertically across the polar area—part of the informally named Lowell Regio, named for Percival Lowell, who founded Lowell Observatory and initiated the search that led to Pluto’s discovery. The widest of the canyons (yellow in the image below) – is about 45 miles (75 kilometers) wide and runs close to the north pole. Roughly parallel subsidiary canyons to the east and west (in green) are approximately 6 miles (10 kilometers) wide. The degraded walls of these canyons appear to be much older than the more sharply defined canyon systems elsewhere on Pluto, perhaps because the polar canyons are older and made of weaker material. These canyons also appear to represent evidence for an ancient period of tectonics.

A shallow, winding valley (in blue) runs the entire length of the canyon floor. To the east of these canyons, another valley (pink) winds toward the bottom-right corner of the image. The nearby terrain, at bottom right, appears to have been blanketed by material that obscures small-scale topographic features, creating a ‘softened’ appearance for the landscape.

Large, irregularly-shaped pits (in red), reach 45 miles (70 kilometers) across and 2.5 miles (4 kilometers) deep, scarring the region. These pits may indicate locations where subsurface ice has melted or sublimated from below, causing the ground to collapse.

The color and composition of this region – shown in enhanced color – also are unusual. High elevations show up in a distinctive yellow, not seen elsewhere on Pluto. The yellowish terrain fades to a uniform bluish gray at lower elevations and latitudes. New Horizons’ infrared measurements show methane ice is abundant across Lowell Regio, and there is relatively little nitrogen ice. “One possibility is that the yellow terrains may correspond to older methane deposits that have been more processed by solar radiation than the bluer terrain,” said Will Grundy, New Horizons composition team lead from Lowell Observatory, Flagstaff, Arizona.

This image was obtained by New Horizons’ Ralph/Multispectral Visible Imaging Camera (MVIC). The image resolution is approximately 2,230 feet (680 meters) per pixel. The lower edge of the image measures about 750 miles (1,200 kilometers) long. It was obtained at a range of approximately 21,100 miles (33,900 kilometers) from Pluto, about 45 minutes before New Horizons’ closest approach on July 14, 2015.

Credits: NASA/JHUAPL/SwRI

Does Charon Have a Frozen Ocean?

This from NASA:
Images from NASA’s New Horizons mission suggest that Pluto’s moon Charon once had a subsurface ocean that has long since frozen and expanded, pushing outward and causing the moon’s surface to stretch and fracture on a massive scale.

The side of Pluto’s largest moon viewed by NASA’s passing New Horizons spacecraft in July 2015 is characterized by a system of “pull apart” tectonic faults, which are expressed as ridges, scarps and valleys—the latter sometimes reaching more than 4 miles (6.5 kilometers) deep. Charon’s tectonic landscape shows that, somehow, the moon expanded in its past, and – like Bruce Banner tearing his shirt as he becomes the Incredible Hulk – Charon’s surface fractured as it stretched.

The outer layer of Charon is primarily water ice. This layer was kept warm when Charon was young by heat provided by the decay of radioactive elements, as well as Charon’s own internal heat of formation. Scientists say Charon could have been warm enough to cause the water ice to melt deep down, creating a subsurface ocean. But as Charon cooled over time, this ocean would have frozen and expanded (as happens when water freezes), lifting the outermost layers of the moon and producing the massive chasms we see today.

charonocean

The top portion of this image shows part of the feature informally named Serenity Chasma, part of a vast equatorial belt of chasms on Charon. In fact, this system of chasms is one of the longest seen anywhere in the solar system, running at least 1,100 miles (about 1,800 kilometers) long and reaching 4.5 miles (7.5 kilometers) deep. By comparison, the Grand Canyon is 277 miles (446 kilometers) long and just over a mile (1.6 kilometers) deep.

The lower portion of the image shows color-coded topography of the same scene. Measurements of the shape of this feature tell scientists that Charon’s water ice layer may have been at least partially liquid in its early history, and has since refrozen.

This image was obtained by the Long-Range Reconnaissance Imager (LORRI) on New Horizons. North is up; illumination is from the top-left of the image. The image resolution is about 1,290 feet (394 meters) per pixel. The image measures 240 miles (386 kilometers) long and 110 miles (175 kilometers) wide. It was obtained at a range of approximately 48,900 miles (78,700 kilometers) from Charon, about an hour and 40 minutes before New Horizons’ closest approach to Charon on July 14, 2015.

Image: NASA/JHUAPL/SwRI

The Night side of Charon

charonnightside

Who would have guessed that not only would we see Pluto’s Charon, but the night side of the moon too?! Ok NASA would.

Here’s what the New Horizons had to say about the image:
After its close approach to Pluto in July 2015, NASA’s New Horizons spacecraft snapped this hauntingly beautiful image of the night side of Pluto’s largest moon, Charon.

Only an imager on the far side of Pluto could catch such a view, with a bright, thin sliver of Charon near the lower left illuminated by the sun. Night has fallen over the rest of this side of Charon, yet despite the lack of sunlight over most of the surface, Charon’s nighttime landscapes are still faintly visible by light softly reflected off Pluto, just as “Earthshine” lights up a new moon each month. Charon is 750 miles (1,214 kilometers) in diameter, approximately as wide as Texas.

Scientists on the New Horizons team are using this and similar images to map portions of Charon otherwise not visible during the flyby. This includes Charon’s south pole – toward the top of this image — which entered polar night in 1989 and will not see sunlight again until 2107. Charon’s polar temperatures drop to near absolute zero during this long winter.

This combination of 16 one-second exposures was taken by New Horizons’ Long Range Reconnaissance Imager (LORRI) at 2:30 UT on July 17, 2015, nearly three days after closest approach to Pluto and Charon, from a range of 1.9 million miles (3.1 million kilometers).

Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Wright Mons

plutoanna

Not long ago Pluto was a blur of light even with the largest telescopes – wow simply excellent!

Scientists with NASA’s New Horizons mission have assembled the highest-resolution color view of one of two potential cryovolcanoes spotted on the surface of the distant planet by the passing New Horizons spacecraft in July 2015.

At about 90 miles (150 kilometers) across and 2.5 miles (4 kilometers) high, the feature – informally named Wright Mons – is enormous. If it is in fact a volcano, as suspected, it would be the largest such feature discovered in the outer solar system.

Mission scientists are intrigued by the sparse distribution of red material in the image and wonder why it is not more widespread. Also perplexing is that there is only one identified impact crater on Wright Mons itself, telling scientists that the surface (as well as some of the crust underneath) was created relatively recently. This is turn may indicate that Wright Mons was volcanically active late in Pluto’s history.

This composite image includes pictures taken by the New Horizons spacecraft’s Long Range Reconnaissance Imager (LORRI) on July 14, 2015, from a range of about 30,000 miles (48,000 kilometers), showing features as small as 1,500 feet (450 meters) across. Sprinkled across the LORRI mosaic is enhanced color data from the Ralph/Multispectral Visible Imaging Camera (MVIC) gathered about 20 minutes after the LORRI snapshots were taken, from a range of 21,000 miles (34,000 kilometers) and at a resolution of about 2,100 feet (650 meters) per pixel. The entire scene is 140 miles (230 kilometers) across.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

 

Blue Bands at Pluto

blurband

This processed image is the highest-resolution color look yet at the haze layers in Pluto’s atmosphere. Shown in approximate true color, the picture was constructed from a mosaic of four panchromatic images from the Long Range Reconnaissance Imager (LORRI) splashed with Ralph/Multispectral Visible Imaging Camera (MVIC) four-color filter data, all acquired by NASA’s New Horizons spacecraft on July 14, 2015. The resolution is 1 kilometer (0.6 miles) per pixel; the sun illuminates the scene from the right.

Scientists believe the haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto’s atmosphere, producing a complex mixture of hydrocarbons such as acetylene and ethylene. These hydrocarbons accumulate into small particles, a fraction of a micrometer in size, and scatter sunlight to make the bright blue haze seen in this image. As they settle down through the atmosphere, the haze particles form numerous intricate, horizontal layers, some extending for hundreds of miles around Pluto. The haze layers extend to altitudes of over 200 kilometers (120 miles).

Adding to the stark beauty of this image are mountains on Pluto’s limb (on the right, near the 4 o’clock position), surface features just within the limb to the right, and crepuscular rays (dark finger-like shadows to the left) extending from Pluto’s topographic features.

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute