Category Archives: New Horizons

Fly Overs

There are two, first New Horizons over Pluto:

And second, a flyover of Charon:

NASA (via YouTube) – Using actual New Horizons data and digital elevation models of Pluto and its largest moon Charon, mission scientists have created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system – from a vantage point even closer than the spacecraft itself.

2014 MU69 Surprises

The New Horizons spacecraft is of course already well past the Pluto system and heading towards the Kuiper Belt Object 2014 MU69. It won’t get there for another year and a half at which time it will be about 43.4 AU (or 43.4 Earth-Sun distances) from the Sun.

Recently 2014 MU69 passed in front of a star and a surprising amount was learned by observing the osculation.

The image was taken with a 16 inch / 406 mm Dobsonian telescope which is awesome and comes from the links at the bottom of the press release from NASA. I am slowly gathering materials to build a 200 mm version of the same type of telescope — see here.

NASA – Scientists have been sifting through data gathered from observing the object’s quick pass in front of a star – an astronomical event known as an occultation – on June 3. More than 50 mission team members and collaborators set up telescopes across South Africa and Argentina, along a predicted track of the narrow shadow of MU69 that the occultation would create on Earth’s surface, aiming to catch a two-second glimpse of the object’s shadow as it raced across the Earth. Accomplishing the observations of that occultation was made possible with the help of NASA’s Hubble Space Telescope and Gaia, a space observatory of the European Space Agency (ESA).

Combined, the pre-positioned mobile telescopes captured more than 100,000 images of the occultation star that can be used to assess the environment around this Kuiper Belt object (KBO). While MU69 itself eluded direct detection, the June 3 data provided valuable and unexpected insights that have already helped New Horizons.

“These data show that MU69 might not be as dark or as large as some expected,” said occultation team leader Marc Buie, a New Horizons science team member from Southwest Research Institute (SwRI) in Boulder, Colorado.

Initial estimates of MU69’s diameter, based primarily on data taken by the Hubble Space Telescope since the KBO’s discovery in 2014, fall in the 12-25-mile (20-40-kilometer) range – though data from this summer’s ground-based occultation observations might imply it’s at or even below the smallest sizes expected before the June 3 occultation.

Besides MU69’s size, the readings offer details on other aspects of the Kuiper Belt object.

“These results are telling us something really interesting,” said New Horizons Principal Investigator Alan Stern, of SwRI. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

More data are on the way, with additional occultations of MU69 occurring on July 10 and July 17. On July 10, NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) will use its powerful 100-inch (2.5-meter) telescope to probe the space around MU69 for debris that might present a hazard to New Horizons as it flies by in 18 months.

On July 17, the Hubble Space Telescope also will check for debris around MU69, while team members set up another groundbased “fence line” of small mobile telescopes along the predicted ground track of the occultation shadow in southern Argentina to try to better constrain, or even determine, the size of MU69.

Check out the star brightness, predicted shadow path and other tech specs for the July 10 and July 17 occultation events.

New Horizons Reaches Halfway Point

Click the image for a larger version. On 03 April 2017 New Horizon’s reached the halfway point in distance between Pluto and KBO MU69 and today 07 April 2017 at 21:24 UTC (or 5:24 p.m. ET) — New Horizons will also reach the halfway point in time between closest approaches to Pluto, which occurred at 7:48 a.m. ET on July 14, 2015, and MU69, predicted for 2 a.m. ET on New Year’s Day 2019.

New Horizons is traveling at 51,500 kmh / 32,000 mph. On 03 April the spacecraft had 782.45 million km / 486.2 million miles from where they think MU69 will be when they get there.

From NASA:
A KBO among the Stars: In preparation for the New Horizons flyby of 2014 MU69 on Jan. 1, 2019, the spacecraft’s Long Range Reconnaissance Imager (LORRI) took a series of 10-second exposures of the background star field near the location of its target Kuiper Belt object (KBO). This composite image is made from 45 of these 10-second exposures taken on Jan. 28, 2017. The yellow diamond marks the predicted location of MU69 on approach, but the KBO itself was too far from the spacecraft (544 million miles, or 877 million kilometers) even for LORRI’s telescopic “eye” to detect. New Horizons expects to start seeing MU69 with LORRI in September of 2018 — and the team will use these newly acquired images of the background field to help prepare for that search on approach. — Credits: NASA/JHUAPL/SWRI

Methane Snowcaps

newhoizonsbrown

An amazingly detailed image of Pluto from New Horizons.

The caption released with the image:

This area is south of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn’t water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long.

A similar valley system in the expansive plains to the east (blue arrows) appears to be branched, with smaller valleys leading into it. New Horizons scientists think flowing nitrogen ice that once covered this area — perhaps when the ice in Sputnik was at a higher elevation — may have formed these valleys. The area is also marked by irregularly shaped, flat-floored depressions (green arrows) that can reach more than 50 miles (80 kilometers) across and almost 2 miles (3 kilometers) deep. The great widths and depths of these depressions suggest that they may have formed when the surface collapsed, rather than through the sublimation of ice into the atmosphere.

This enhanced color image was obtained by New Horizons’ Multispectral Visible Imaging Camera (MVIC). The image resolution is approximately 2,230 feet (680 meters) per pixel. It was obtained at a range of approximately 21,100 miles (33,900 kilometers) from Pluto, about 45 minutes before New Horizons’ closest approach to Pluto on July 14, 2015.

Oh and take look from New Horizons at the next stop Quaoar. New Horizons will arrive 01 January 2019:

quaoar

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Shores of Pluto

plutoterrain

 

Those “pits” are very intriguing, need to know more about them.

New Horizons:

This enhanced color view from NASA’s New Horizons spacecraft zooms in on the southeastern portion of Pluto’s great ice plains, where at lower right the plains border rugged, dark highlands informally named Krun Macula. (Krun is the lord of the underworld in the Mandaean religion, and a ‘macula’ is a dark feature on a planetary surface.)

Pluto is believed to get its dark red color from tholins, complex molecules found across much of the surface. Krun Macula rises 1.5 miles (2.5 kilometers) above the surrounding plain – informally named Sputnik Planum – and is scarred by clusters of connected, roughly circular pits that typically reach between 5 and 8 miles (8 and 13 kilometers) across, and up to 1.5 miles (2.5 kilometers) deep.

At the boundary with Sputnik Planum, these pits form deep valleys reaching more than 25 miles (40 kilometers) long, 12.5 miles (20 kilometers) wide and almost 2 miles (3 kilometers) deep – almost twice as deep as the Grand Canyon in Arizona – and have floors covered with nitrogen ice.  New Horizons scientists think these pits may have formed through surface collapse, although what may have prompted such a collapse is a mystery.

This scene was created using three separate observations made by New Horizons in July 2015. The right half of the image is composed of 260 feet- (80 meter-) per-pixel data from the Long Range Reconnaissance Imager (LORRI), obtained at 9,850 miles (15,850 kilometers) from Pluto, about 23 minutes before New Horizons’ closest approach.  The left half is composed of 410 feet- (125 meter-) per-pixel LORRI data, obtained about six minutes earlier, with New Horizons 15,470 miles (24,900 kilometers) from Pluto.

These data respectively represent portions of the highest- and second-highest-resolution observations obtained by New Horizons in the Pluto system. The entire scene was then colorized using 2,230 feet- (680 meter-) per-pixel data from New Horizons’ Ralph/Multispectral Visual Imaging Camera (MVIC), obtained at 21,100 miles (33,900 kilometers) from Pluto, about 45 minutes before closest approach.

Credits: NASA/JHUAPL/SwRI

Active Pluto

plutolavalamp

Hard to imagine that a (dwarf) planet so far from the Sun would be as active as Pluto is!

The New Horizon’s caption:
Like a cosmic lava lamp, a large section of Pluto’s icy surface is being constantly renewed by a process called convection that replaces older surface ices with fresher material.

Scientists from NASA’s New Horizons mission used state-of-the-art computer simulations to show that the surface of Pluto’s informally named Sputnik Planum is covered with churning ice “cells” that are geologically young and turning over due to a process called convection. The scene above, which is about 250 miles (400 kilometers) across, uses data from the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC), gathered July 14, 2015. Their findings are published in the June 2, 2016, issue of the journal Nature.

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Peering Through Pluto’s Atmosphere

plutoatmosphere

New findings from New Horizons:

New Horizons succeeded in observing the first occultations of Pluto’s atmosphere by ultraviolet stars, an important goal of the mission’s Pluto encounter. This illustration shows how New Horizons’ Alice ultraviolet spectrometer instrument “watched” as two bright ultraviolet stars passed behind Pluto and its atmosphere. The light from each star dimmed as it moved through deeper layers of the atmosphere, absorbed by various gases and hazes.

The observations were made approximately four hours after New Horizons made its closest approach to Pluto on July 14, 2015, when the spacecraft was about 200,000 miles (320,000 kilometers) beyond Pluto.

Much like the solar occultation that Alice had observed a few hours before – when it used sunlight to make similar measurements – these stellar occultations provided information about the composition and structure of Pluto’s atmosphere. Both stellar occultations revealed ultraviolet spectral fingerprints of nitrogen, hydrocarbons like methane and acetylene, and even haze, just as the solar occultation had done earlier.

The results from the solar and stellar occultations are also consistent in terms of vertical pressure and temperature structure of Pluto’s upper atmosphere. This means that the upper atmosphere vertical profiles of nitrogen, methane, and the observed hydrocarbons are similar over many locations on Pluto.

These results confirm findings from the Alice solar occultation that the upper atmospheric temperature is as much as 25 percent colder and thus more compact than what scientists predicted before New Horizons’ encounter. This also confirms, albeit indirectly, the result from analysis and modeling of the Alice solar observation that the escape rate of nitrogen is about 1,000 times lower than expected before the flyby.

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute