Category Archives: Space Telescope

Hen 2-437


This beautiful Hubble photo was the Image of the Day over at NASA yesterday, so good I had to share

In this cosmic snapshot, the spectacularly symmetrical wings of Hen 2-437 show up in a magnificent icy blue hue. Hen 2-437 is a planetary nebula, one of around 3,000 such objects known to reside within the Milky Way.

Located within the faint northern constellation of Vulpecula (The Fox), Hen 2-437 was first identified in 1946 by Rudolph Minkowski, who later also discovered the famous and equally beautiful M2-9 (otherwise known as the Twin Jet Nebula). Hen 2-437 was added to a catalog of planetary nebula over two decades later by astronomer and NASA astronaut Karl Gordon Henize.

Planetary nebulae such as Hen 2-437 form when an aging low-mass star — such as the sun — reaches the final stages of life. The star swells to become a red giant, before casting off its gaseous outer layers into space. The star itself then slowly shrinks to form a white dwarf, while the expelled gas is slowly compressed and pushed outwards by stellar winds. As shown by its remarkably beautiful appearance, Hen 2-437 is a bipolar nebula — the material ejected by the dying star has streamed out into space to create the two icy blue lobes pictured here.

Image credit: ESA (European Space Agency)/Hubble & NASA, Acknowledgement: Judy Schmidt
Text credit: ESA


Merging Galaxies


One day our Milky Way will be in the midst of a similar merger, ours with Andromeda.

The ESA description:
The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time.

NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations.

Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.

Image and caption: ESA/Hubble & NASA

IDCS 1426

A collaboration of three amazing telescopes: Chandra, Herschel and Spitzer.

10 BILLION light-years distant!

Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA’s Great Observatories. This multi-wavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light detected by the Spitzer Space Telescope in red.

This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how such megastructures formed and evolved early in the universe. The light astronomers observed from IDCS 1426 began its journey to Earth when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early time.

First discovered by the Spitzer Space Telescope in 2012, IDCS 1426 was then observed using the Hubble Space Telescope and the Keck Observatory to determine its distance. Observations from the Combined Array for Millimeter-wave Astronomy indicated it was extremely massive. New data from the Chandra X-ray Observatory confirm the galaxy cluster’s mass and show that about 90 percent of this mass is in the form of dark matter — the mysterious substance that has so far been detected only through its gravitational pull on normal matter composed of atoms.

There is a region of bright X-ray emission (seen as blue-white) near the middle of the cluster, but not exactly at the center. The location of this “core” of gas suggests that the cluster may have had a collision or interaction with another massive system of galaxies relatively recently, perhaps within about the last 500 million years. This would cause the core to slosh around like wine in a moving glass and become offset, as it appears to be in the Chandra data. Such a merger would not be surprising, given that astronomers are observing IDCS 1426 when the universe was only 3.8 billion years old. Scientists think that, in order for such an enormous structure to form so rapidly, mergers with smaller clusters would likely play a role in the large cluster’s growth.

In addition, while still extremely hot, the bright core contains cooler gas than its surroundings. This is the most distant galaxy cluster where such a “cool core” of gas has been observed. Astronomers think these cool cores are important in understanding how quickly hot gas cools off in clusters, influencing the rate at which stars are born. This cooling rate could be slowed down by outbursts from a supermassive black hole in the center of the cluster. Apart from the cool core, the hot gas in the cluster is remarkably symmetrical and smooth. This is another piece of evidence that IDCS 1426 formed very rapidly in the early universe.

Astronomers note that, despite the high mass and rapid evolution of this cluster, its existence does not pose a threat to the standard model of cosmology.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

Eta Carinae


We now know Eta Carina has analogs (described at twins) in other galaxies.

Here’s the story at NASA (includes images of the other systems).

From Hubble/NASA/ESA:
Astronomers cannot yet explain what caused the titanic eruption of star Eta Carinae in the 1840s. The discovery of likely Eta Carinae “twins” in other galaxies will help scientists better understand this brief phase in the life of a massive star.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

Image Credit :NASA, ESA and the Hubble SM4 ERO Team


Merging Galaxies


ESA’s caption:

This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules.

It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure.

As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies.

Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

Happy New Year!

Herbig-Haro Jet HH 24

Happy New Year everybody!

What better way to start the new year than a picture of a baby, a baby star that is.

From Hubblesite:

Just about anything is possible in our remarkable universe, and it often competes with the imaginings of science fiction writers and filmmakers. Hubble’s latest contribution is a striking photo of what looks like a double-bladed lightsaber straight out of the Star Wars films. In the center of the image, partially obscured by a dark, Jedi-like cloak of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe. Gas from a surrounding disk rains down onto the dust-obscured protostar and engorges it. The material is superheated and shoots outward from the star in opposite directions along an uncluttered escape route — the star’s rotation axis. Much more energetic than a science fiction lightsaber, these narrow energetic beams are blasting across space at over 100,000 miles per hour. This celestial lightsaber does not lie in a galaxy far, far away but rather inside our home galaxy, the Milky Way.

What am I doing on the first day of 2016? Waiting for the furnace repair guy to show up.

NuSTAR and NGC 1068


Galaxy NGC 1068 is shown in visible light and X-rays in this composite image. High-energy X-rays (magenta) captured by NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, are overlaid on visible-light images from both NASA’s Hubble Space Telescope and the Sloan Digital Sky Survey. The X-ray light is coming from an active supermassive black hole, also known as a quasar, in the center of the galaxy. This supermassive black hole has been extensively studied due to its relatively close proximity to our galaxy. NGC 1068 is about 47 million light-years away in the constellation Cetus.

The supermassive black hole is also one of the most obscured known, blanketed by thick clouds of gas and dust. NuSTAR’s high-energy X-ray view is the first to penetrate the walls of this black hole’s hidden lair.

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA’s Jet Propulsion Laboratory, also in Pasadena, for NASA’s Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Virginia. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York; NASA’s Goddard Space Flight Center, Greenbelt, Maryland; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, California; ATK Aerospace Systems, Goleta, California, and with support from the Italian Space Agency (ASI) Science Data Center.

NuSTAR’s mission operations center is at UC Berkeley, with the ASI providing its equatorial ground station located at Malindi, Kenya. The mission’s outreach program is based at Sonoma State University, Rohnert Park, California. NASA’s Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

NASA/JPL-Caltech/Roma Tre Univ.

Stellar Shrapnel

Veil Nebula Supernova Remnant

Beautiful image of the Veil Nebula. I always have a hard time trying to take a decent image of the Veil,

Hubble description:
Not long before the dawn of recorded human history, our distant ancestors would have witnessed what appeared to be a bright new star briefly blazing in the northern sky, rivaling the glow of our moon. In fact, it was the titanic detonation of a bloated star much more massive than our sun. Now, thousands of years later, the expanding remnant of that blast can be seen as the Cygnus Loop, a donut-shaped nebula that is six times the apparent diameter of the full moon. The Hubble Space Telescope was used to zoom into a small portion of that remnant, called the Veil Nebula. Hubble resolves tangled rope-like filaments of glowing gases. Supernovae enrich space with heavier elements used in the formation of future stars and planets — and possibly life.

Visit Hubblesite for larger images.

Changes in the Great Red Spot

Click the image for a larger version.

We have seen features on Jupiter change from time to time.  Here we see changes to  the Great Red Spot.  Using a top notch observatory like Hubble and the Wide Field and Planetary Camera 3 (WFPC3) helps a great deal.

About the image from NASA:

The movement of Jupiter’s clouds can be seen by comparing the first map to the second one in this animated pair of images. Zooming in on the Great Red Spot at blue (below, at left) and red (below, at right) wavelengths reveals a unique filamentary feature not previously seen.

Image: NASA/ESA/GSFC/UCBerkeley/JPL-Caltech/STScI


Mysterious Ripples Found

AU Microscopii

Hubblesite – Though astronomers have discovered thousands of planets orbiting other stars, very little is known about how they are born. The conventional wisdom is that planets coagulate inside a vast disk of gas and dust encircling newborn stars. But the details of the process are not well understood because it takes millions of years to happen as the disk undergoes numerous changes until it finally dissipates.

The young, nearby star AU Microscopii (AU Mic) is an ideal candidate to get a snapshot of planet birthing because the disk is tilted nearly edge on to our view from Earth. This very oblique perspective offers an opportunity to see structure in the disk that otherwise might go unnoticed. Astronomers are surprised to uncover fast-moving, wave-like features embedded in the disk that are unlike anything ever observed, or even predicted. Whatever they are, these ripples are moving at 22,000 miles per hour — fast enough to escape the star’s gravitational pull. This parade of blob-like features stretches farther from the star than Pluto is from our sun. They are so mysterious it’s not known if they are somehow associated with planet formation, or some unimagined, bizarre activity inside the disk.

Learn even more about AU Mic by joining the live Hubble Hangout discussion at 3:00 pm EDT on Thurs., Oct. 8 at