Category Archives: Space Telescope

Changes in the Great Red Spot

Click the image for a larger version.

We have seen features on Jupiter change from time to time.  Here we see changes to  the Great Red Spot.  Using a top notch observatory like Hubble and the Wide Field and Planetary Camera 3 (WFPC3) helps a great deal.

About the image from NASA:

The movement of Jupiter’s clouds can be seen by comparing the first map to the second one in this animated pair of images. Zooming in on the Great Red Spot at blue (below, at left) and red (below, at right) wavelengths reveals a unique filamentary feature not previously seen.

Image: NASA/ESA/GSFC/UCBerkeley/JPL-Caltech/STScI


Mysterious Ripples Found

AU Microscopii

Hubblesite – Though astronomers have discovered thousands of planets orbiting other stars, very little is known about how they are born. The conventional wisdom is that planets coagulate inside a vast disk of gas and dust encircling newborn stars. But the details of the process are not well understood because it takes millions of years to happen as the disk undergoes numerous changes until it finally dissipates.

The young, nearby star AU Microscopii (AU Mic) is an ideal candidate to get a snapshot of planet birthing because the disk is tilted nearly edge on to our view from Earth. This very oblique perspective offers an opportunity to see structure in the disk that otherwise might go unnoticed. Astronomers are surprised to uncover fast-moving, wave-like features embedded in the disk that are unlike anything ever observed, or even predicted. Whatever they are, these ripples are moving at 22,000 miles per hour — fast enough to escape the star’s gravitational pull. This parade of blob-like features stretches farther from the star than Pluto is from our sun. They are so mysterious it’s not known if they are somehow associated with planet formation, or some unimagined, bizarre activity inside the disk.

Learn even more about AU Mic by joining the live Hubble Hangout discussion at 3:00 pm EDT on Thurs., Oct. 8 at

The Veil Nebula by Hubble

Veil Nebula Supernova Remnant

Stunning.  I have tried to get an image of the Veil for a long time, so I have a great appreciation for this picture.  Then again this is from Hubble.

Click the image to see a zoomable version at Hubblesite.

Not long before the dawn of recorded human history, our distant ancestors would have witnessed what appeared to be a bright new star briefly blazing in the northern sky, rivaling the glow of our moon. In fact, it was the titanic detonation of a bloated star much more massive than our sun. Now, thousands of years later, the expanding remnant of that blast can be seen as the Cygnus Loop, a donut-shaped nebula that is six times the apparent diameter of the full moon. The Hubble Space Telescope was used to zoom into a small portion of that remnant, called the Veil Nebula. Hubble resolves tangled rope-like filaments of glowing gases. Supernovae enrich space with heavier elements used in the formation of future stars and planets — and possibly life.

Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Milky Way’s Black Hole is Getting Active


Is the black hole at the center of the Milky Way becoming more active?  It’s been getting some attention lately.  There is ten-fold increase of X-ray flares from Sagittarius A* since an object called G2 made a close approach.

Here’s the NASA  / Chandra press release:

Three orbiting X-ray space telescopes have detected an increased rate of X-ray flares from the usually quiet giant black hole at the center of our Milky Way galaxy after new long-term monitoring.

Scientists are trying to learn whether this is normal behavior that was unnoticed due to limited monitoring, or these flares are triggered by the recent close passage of a mysterious, dusty object.

Continue reading

Star Clusters in Andromeda

Star Clusters in the Andromeda Galaxy

The Andromeda galaxy is an easy telescope target it is a relatively bright magnitude 3.4 and very large. I am in a new location and seem to have pretty dark skies, could it be a binocular target? I’m soon to find out.

Hubble took a look and found open star clusters in Andromeda 2.5 million light-years away. Our own Milky Way has many star clusters and I have a favorite – the Double Cluster.

The image description from Hubblesite:

[Top] — This is a Hubble Space Telescope mosaic of 414 photographs of the nearest major galaxy to our Milky Way galaxy, the Andromeda galaxy (M31). The vast panorama was assembled from nearly 8,000 separate exposures taken in near-ultraviolet, visible, and near-infrared light. Embedded within this view are 2,753 star clusters. The view is 61,600 light-years across and contains images of 117 million stars in the galaxy’s disk.

[Bottom-Left] — An enlargement of the boxed field in the top image reveals myriad stars and numerous open star clusters as bright blue knots. Hubble’s bird’s-eye view of M31 allowed astronomers to conduct a larger-than-ever sampling of star clusters that are all at the same distance from Earth, 2.5 million light-years. The view is 4,400 light-years across.

[Bottom-Right] — This is a view of six bright blue clusters extracted from the field. Hubble astronomers discovered that, for whatever reason, nature apparently cooks up stars with a consistent distribution from massive stars to small stars (blue supergiants to red dwarfs). This remains a constant across the galaxy, despite the fact that the clusters vary in mass by a factor of 10 and range in age from 4 million to 24 million years old. Each cluster square is 150 light-years across.

Credit: NASA, ESA, J. Dalcanton, B.F. Williams, and L.C. Johnson (University of Washington), the PHAT team, and R. Gendler

Cosmic Cloud Mon R2


A beautiful image from ESA’s Herschel Space Observatory.

See a larger version here at ESA.

Credit: ESA/Herschel/PACS/SPIRE/HOBYS Key Programme consortium

From ESA:

Fierce flashes of light ripple through delicate tendrils of gas in this new image, from ESA’s Herschel space observatory, which shows the dramatic heart of a large and dense cosmic cloud known as Mon R2. This cloud lies some 2700 light-years away and is studded with hot, newly-formed stars.

Packed into the bright centre of this region are several hot ‘bubbles’ of ionised hydrogen, associated with newborn stars situated nearby. Here, gas heated to a temperature of 10 000 °C quickly expands outwards, inflating and enlarging over time. Herschel has explored the bubbles in Mon R2, finding them to have grown over the course of 100 000 to 350 000 years.

Continue reading

Hubble’s View of WR 124

wr124bThe star in this image is around ten times the radius of our Sun and is about 9 times as massive. Even though it is losing mass thanks to those strong stellar winds the star could have enough mass left over to explode as a supernova in the next few hundred thousand years – or so. As for the sizes above, the values depend on distance. Distance is difficult and why missions like Gaia are so important.

Here’s the ESA/Hubble/NASA press release:

Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15,000 light-years away.

The star Hen 2-427 shines brightly at the very center of this explosive image and around the hot clumps of surrounding gas that are being ejected into space at over 93,210 miles (150,000 km) per hour.

Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterized by a fierce ejection of mass.

The nebula M1-67 is estimated to be no more than 10,000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes.

Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Text credit: European Space Agency

The Little Gem Nebula

A colorful nebula seems a great way to start the week.


Hubble’s view of the Little Gem Nebula (via NASA):

This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale.

When stars like the sun enter “retirement,” they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud.

Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers.

Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula.

Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Text credit: European Space Agency

Hubble’s View of NGC 6153


A nice (and timely) follow-up to a post last week talking a little about metallicity. This planetary nebula has no “common name” that I can find. Looks a bit like a Jellyfish to me.

Here’s ESA description:
This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula.

Continue reading