Category Archives: Uncategorized

Like a Plasma Wake


This sounds something like an evolution of a wake to me. I could see the plasma, which I would guess would be rotating, coalesce into spherical masses or “balls”.

Here is the NASA description:
This four-panel graphic illustrates how the binary-star system V Hydrae is launching balls of plasma into space.

Panel 1 shows the two stars orbiting each other. One of the stars is nearing the end of its life and has swelled in size, becoming a red giant.

In panel 2, the smaller star’s orbit carries the star into the red giant’s expanded atmosphere. As the star moves through the atmosphere, it gobbles up material from the red giant that settles into a disk around the star.

The buildup of material reaches a tipping point and is eventually ejected as blobs of hot plasma along the star’s spin axis, as shown in panel 3.

This ejection process is repeated every eight years, which is the time it takes for the orbiting star to make another pass through the bloated red giant’s envelope, as shown in panel 4.


ALMA Finds Ice Giant Planet?


Could there be a Neptune sized planet in one of those dust lanes in the image above?

From the National Astronomical Observatory of Japan:

Astronomers found signs of a growing planet around TW Hydra, a nearby young star, using the Atacama Large Millimeter/submillimeter Array (ALMA). Based on the distance from the central star and the distribution of tiny dust grains, the baby planet is thought to be an icy giant, similar to Uranus and Neptune in our Solar System. This result is another step towards understanding the origins of various types of planets.

These observation results were accepted for a publication as Tsukagoshi et al. “A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya” by the Astrophysical Journal Letters.

Hinode Launch Anniversary


To celebrate Hinode’s 10th anniversary, this video from the Japanese Aerospace Exploration Agency (JAXA) and National Astromonical Observatory of Japan (NAOJ) features highlights captured during the satellite’s first decade in space. The Hinode mission is led by JAXA, with participation from NASA and the United Kingdom and European Space Agencies. Credit: JAXA/NAOJ


Sentinel-1A Damaged


The power producing solar panels on the Sentinel-1A satellite have been damaged by an impact of some sort. The impacting object was tiny, in the few-millimetres class tiny. The image above from ESA shows the damage.

Even an impact with such a tiny object makes a difference:

A sudden small power reduction was observed in a solar array of Sentinel-1A, orbiting at 700 km altitude, at 17:07 GMT on 23 August. Slight changes in the orientation and the orbit of the satellite were also measured at the same time. — ESA

Sentinel 1A operations have not been impacted. There are in excess of 19,000 bits of known space debris, luckily this one was small.

The in-depth story from ESA.

SpaceX Update

SpaceX is being very open thorough in the investigation to the explosion of their rocket – see yesterday’s post.

I knew this was really out of the ordinary and then to find out it happened eight minutes before the test firing was to begin just adds to the mystery of what caused the explosion. We will find out.

See the SpaceX updates here.

Thanks to great safety protocols there were no injuries from the incident.


Ever notice how spacecraft destined to stay in orbit for some period of time always seem to have reflective foil around them? Ever wonder how that could possibly work?

You’re in luck!  ESA shows us the state-of-the-art in space insulation:


From ESA:
Blankets of multi-layer insulation (MLI) are used to cover satellite surfaces to help insulate them from orbital temperature extremes. These are the reason that satellites often look as though they’ve been covered in shiny Christmas wrapping.

MLI blankets are made up of multiple layers of very thin, metal-coated plastic film, with low-conducting ‘spacer’ material placed in-between such as silk, nylon or glass-fibre netting. Alternatively, MLI is sometimes deliberately crinkled to minimise any contact between layers.

In the airlessness of space, objects can be hot and cold at the same time, especially if one side is in sunshine and another is in shade. In such conditions, thermal radiation is the main driver of temperature change (rather than convection or conduction), and reflective MLI serves to minimise it.

Thermal control specialists aim to maintain the temperature of the satellite within set limits, to keep electronic and mechanical parts working optimally and to prevent any temperature-triggered structural distortion.

Placing MLI blankets on a satellite body is a skilled art in itself, with complex shapes needing to be created to fit around around edges or joints.

Credit: ESA–G. Porter

The Transit is Coming

Tomorrow the planet Mercury moves along the face of the sun in what is known as a transit and we can see it. The Mercury transits occur about every 13 years.

First – DO NOT EVER look at the sun without ADEQUATE eye protection!!!!!

If it is cloudy where you are, no worries, check back here tomorrow for links for on-line sources.  Today a couple of video’s.

The first from Physics World entitled, Guide to the transit of Mercury 2016:

and the second from Science@NASA, an updated version of the video I put up a week ago titled, ScienceCasts: The 2016 Transit of Mercury (updated):

Also here’s a pdf with great information from the US Naval Observatory.

Sentinel 1B Launch


If you happened by yesterday to watch the launch of Sentinel 1B you know it was postponed due to weather issues.

The good part about the delay is I will get to see the launch if it goes as planned today.

ESA was kind enough to indicate the launch times in a variety of time zones:

Delayed again.  These times are listed on the ESA site, but may not be current  (they don’t seem to be ).

  • 06:02:13 p.m., (Local time in French Guiana)
  • 05:02:13 p.m., (in Washington, D.C.)
  • 09:02:13 p.m., (UTC)
  • 11:02:13 p.m., (in Paris)
  • 00:02:13 a.m., (in Moscow) on April

Here is the link for the live coverage from ESA.

The image (copyright ESA–Manuel Pedoussaut, 2016) shows the Soyuz VS14 upper composite hoisted to the top of the service tower in preparation for launch.