Category Archives: History

Kepler Retires

After more than nine-years the Kepler spacecraft is out of fuel and has been retired. What a mission it was too, click the graphic NASA put together and view some the the accomplishments including more than 2,600 new planets found.

NASA: After nine years in deep space collecting data that indicate our sky to be filled with billions of hidden planets – more planets even than stars – NASA’s Kepler space telescope has run out of fuel needed for further science operations. NASA has decided to retire the spacecraft within its current, safe orbit, away from Earth. Kepler leaves a legacy of more than 2,600 planet discoveries from outside our solar system, many of which could be promising places for life.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington. “Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

Kepler has opened our eyes to the diversity of planets that exist in our galaxy. The most recent analysis of Kepler’s discoveries concludes that 20 to 50 percent of the stars visible in the night sky are likely to have small, possibly rocky, planets similar in size to Earth, and located within the habitable zone of their parent stars. That means they’re located at distances from their parent stars where liquid water – a vital ingredient to life as we know it – might pool on the planet surface.

The most common size of planet Kepler found doesn’t exist in our solar system – a world between the size of Earth and Neptune – and we have much to learn about these planets. Kepler also found nature often produces jam-packed planetary systems, in some cases with so many planets orbiting close to their parent stars that our own inner solar system looks sparse by comparison.

“When we started conceiving this mission 35 years ago we didn’t know of a single planet outside our solar system,” said the Kepler mission’s founding principal investigator, William Borucki, now retired from NASA’s Ames Research Center in California’s Silicon Valley. “Now that we know planets are everywhere, Kepler has set us on a new course that’s full of promise for future generations to explore our galaxy.”

Launched on March 6, 2009, the Kepler space telescope combined cutting-edge techniques in measuring stellar brightness with the largest digital camera outfitted for outer space observations at that time. Originally positioned to stare continuously at 150,000 stars in one star-studded patch of the sky in the constellation Cygnus, Kepler took the first survey of planets in our galaxy and became the agency’s first mission to detect Earth-size planets in the habitable zones of their stars.

“The Kepler mission was based on a very innovative design. It was an extremely clever approach to doing this kind of science,” said Leslie Livesay, director for astronomy and physics at NASA’s Jet Propulsion Laboratory, who served as Kepler project manager during mission development. “There were definitely challenges, but Kepler had an extremely talented team of scientists and engineers who overcame them.”

Four years into the mission, after the primary mission objectives had been met, mechanical failures temporarily halted observations. The mission team was able to devise a fix, switching the spacecraft’s field of view roughly every three months. This enabled an extended mission for the spacecraft, dubbed K2, which lasted as long as the first mission and bumped Kepler’s count of surveyed stars up to more than 500,000.

The observation of so many stars has allowed scientists to better understand stellar behaviors and properties, which is critical information in studying the planets that orbit them. New research into stars with Kepler data also is furthering other areas of astronomy, such as the history of our Milky Way galaxy and the beginning stages of exploding stars called supernovae that are used to study how fast the universe is expanding. The data from the extended mission were also made available to the public and science community immediately, allowing discoveries to be made at an incredible pace and setting a high bar for other missions. Scientists are expected to spend a decade or more in search of new discoveries in the treasure trove of data Kepler provided.

“We know the spacecraft’s retirement isn’t the end of Kepler’s discoveries,” said Jessie Dotson, Kepler’s project scientist at NASA’s Ames Research Center in California’s Silicon Valley. “I’m excited about the diverse discoveries that are yet to come from our data and how future missions will build upon Kepler’s results.”

Before retiring the spacecraft, scientists pushed Kepler to its full potential, successfully completing multiple observation campaigns and downloading valuable science data even after initial warnings of low fuel. The latest data, from Campaign 19, will complement the data from NASA’s newest planet hunter, the Transiting Exoplanet Survey Satellite, launched in April. TESS builds on Kepler’s foundation with fresh batches of data in its search of planets orbiting some 200,000 of the brightest and nearest stars to the Earth, worlds that can later be explored for signs of life by missions, such as NASA’s James Webb Space Telescope.

NASA’s Ames Research Center in California’s Silicon Valley manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA’s Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation in Boulder, Colorado, operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

————

What now for Kepler? Glad you asked:

Parker Probe Sets Record

The Parker Solar Probe set a new record for being the closest “human-made” object to the Sun and it hasn’t reached perihelion yet – that comes on 31 Oct.

The Parker Solar Probe probably has broken a speed record (waiting for confirmation) and the old record is 153,454 mph / 246,960 kmh.

I am looking forward to seeing how the heat shield works out.

NASA: Parker Solar Probe now holds the record for closest approach to the Sun by a human-made object. The spacecraft passed the current record of 26.55 million miles from the Sun’s surface on Oct. 29, 2018, at about 1:04 p.m. EDT, as calculated by the Parker Solar Probe team.

The previous record for closest solar approach was set by the German-American Helios 2 spacecraft in April 1976. As the Parker Solar Probe mission progresses, the spacecraft will repeatedly break its own records, with a final close approach of 3.83 million miles from the Sun’s surface expected in 2024.

“It’s been just 78 days since Parker Solar Probe launched, and we’ve now come closer to our star than any other spacecraft in history,” said Project Manager Andy Driesman, from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “It’s a proud moment for the team, though we remain focused on our first solar encounter, which begins on Oct. 31.”

Parker Solar Probe is also expected to break the record for fastest spacecraft traveling relative to the Sun on Oct. 29 at about 10:54 p.m. EDT. The current record for heliocentric speed is 153,454 miles per hour, set by Helios 2 in April 1976.

The Parker Solar Probe team periodically measures the spacecraft’s precise speed and position using NASA’s Deep Space Network, or DSN. The DSN sends a signal to the spacecraft, which then retransmits it back to the DSN, allowing the team to determine the spacecraft’s speed and position based on the timing and characteristics of the signal. Parker Solar Probe’s speed and position were calculated using DSN measurements made on Oct. 24, and the team used that information along with known orbital forces to calculate the spacecraft’s speed and position from that point on.

Parker Solar Probe will begin its first solar encounter on Oct. 31, continuing to fly closer and closer to the Sun’s surface until it reaches its first perihelion — the point closest to the Sun — at about 10:28 p.m. EST on Nov. 5. The spacecraft will face brutal heat and radiation conditions while providing humanity with unprecedentedly close-up observations of a star and helping us understand phenomena that have puzzled scientists for decades. These observations will add key knowledge to NASA’s efforts to understand the Sun, where changing conditions can propagate out into the solar system, affecting Earth and other worlds.

Image: NASA/JHUAPL

Space X SAOCOM 1A – Launch REPLAY

SpaceX launches SAOCOM 1A satellite for Argentina.

The launch is from Vandenburg AFB in California and this also marks the first time the first-stage has returned to California – so SpaceX makes history again.

The launch is about 16 minutes into the video above from SpaceX. You can fast forward there but if you do you will miss some great information SpaceX always includes prior to launch.

The First “A” in NASA

NASA had this on their website yesterday to mark their 60th birthday with a look back to their roots.

“A” is for aeronautics. This is a classic image from the early days, credit: NASA/Robert G.Ferguson.

Here is the original caption (Yvette Smith):

NASA, the National Aeronautics and Space Administration, is more than a space agency. Aeronautics, the first A of the NASA acronym, has always been a part of the agency, but against the headline exploits of rocket launches, Moon landings, space shuttle missions, and Mars rovers, aeronautics is sometimes lost in the shadows of NASA’s marquee space programs. This relative obscurity belies what has been a remarkably creative, productive and highly effective group of researchers who, at one time, even helped bring about the Space Age and invent a space agency.

Aeronautics really might be called the “other NASA,” distinct in its charge, methodologies and scale. Aeronautics research is not mission-oriented in the same way that going to the Moon or Mars is. It is interested in learning about physical phenomena, such as turbulence, and how to do something, such as quieting the noise of helicopter blades.

This is fitting, as today we celebrate NASA’s 60th anniversary  — the agency came into being on Oct. 1, 1958. When it began, NASA absorbed the facilities and personnel of the NACA, the National Advisory Committee for Aeronautics. Centers like Langley and Ames and others predate the creation of NASA, but the expertise of the scientists of the NACA were needed to create a distinct agency that encompassed aeronautics and aerospace activities.

Currently, NASA’s Aeronautics Research Mission Directorate has four research programs that continue to develop advanced technologies to reduce aviation’s environmental impact and transform the way the public flies.

This image from March 1962 shows an X-15 aircraft model, as shock waves surround the small scale object in the Langley Research Center’s 4 x 4 Supersonic Pressure Tunnel.